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Folding is a common process in
physics

signal Apparatus  gpepved signal
response

/A//\

f (x) 5(%,Y) a(y)= [ f(x)5(x y)dx



Convolution is a linear folding

signal Apparatus  opcerved signal
response
Z=Y—X Yy=2+X

F(x) o(y —X) g(y)= jf(X)5(Y—X)dX



g(y) = [ f(z)(y — x)da
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Z = f(X1,X5) .

F°|dm9 Zn = Z e Zy = Xy auxiliary variable
theorem 7= f(X0, Xa) ,  Zo=X.
The jacobian is

afrt af!
g =| o 0| O
- B | 621 j

0 1
From the general theorem one obtains

(9 —1
Pz(zhzz) px(ﬁhiz) 5»21‘1

by integrating on the auxiliary variable
p_z] El) [}DZ ,31:.,2:’2) d,zg .

hence
a —1
pz(z) = [P_X T1, T2) g; | dxo
5 —1
— fp_)((fl (2, @2), T2) glz dazg ,

which is the probability density



For independent variables:

1 ofy"
pZ(z) = !pxl (fl (’Z= 3:?)) ng(:EQ) Oz dazg .

when Z is given by the sum
/= X1+ Xy,

we have

—1
X1=f1_1(21X2) =Z—X2 3 afl

0z

=1,
and we obtain

pz(z) = fj;px(z — 9, o) dxy .

When X; and X, are independent, we obtain
the convolution integral

— [ pl{] Z = L?)I}Y)(LQ) dLLZ 3

In physucs
( 8 instrument funcfion f signal)

g(y) = [ fly—x)é(x)dz

Convolution
theorem



Uniform*Gaussian

When Z =X +Y where
X ~ N(u,0?) eY ~ Ula,b).
one has immediately

1 5 1  (z—y—p)?
pz(z) = - /, 3 P o dy
R T N N R C RN
B b—a,f“{r Qﬂexp_ 202 dy .

N )




1D Unfolding

In the reconstruction of an histogram,

® the true histogram (imacge) where the bin contents
are the expected values

H = (]u‘ljf-i‘zj S :Ju'z"'«'r) 7 .Iu'j = P;mtpj' = Htot -/l;inift(y} dy



2D Unfolding

The observed Nj;j(exp) events have to be compared
with the expected values N;j(th) predicted by a model.

N;j(th) = NP;j(obs) = N )_ Pyj(true) P,(obs;j|trueyj) , (94)
'3

that is, the number of events observed in the ijth-cell is
due to the presence into the i'j'th-cell, times the prob—
ability P, that the PSF shifts the point from the i';’ to
the ij-cell. One has to sum on all the cells near the
1j—one.
In eq. (94) the normalization is understood. In prac-
tice, from (93, 94), one has

Py ji(true) P,(obs;;|true; )
¥ij [Lirjr Porjr(true) Py(obs;;|true; ;)]

In the case of a two dimensional Gaussian point spread
function PSF:

P(true.,-,- |ObS,'rjl)

(95)

> (@i —zip)® (i — yeir)?
27 0,0y 203 207 ,
(96)

Pv(ObS,'j|true,vj;) =



Fourier Techniques

f(z) = [ F(t) ™ dt

Convolution:
(@) = [9(y)d(z —y)dy
[F(t)e™ at = [ G(t) v A(t) ™9 gy
/ Ft)e™ " dt = [ G(t) A(t)e*™* dt — F(t) = G(t) A(t)
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Image Deconvolution

D(x) = [ dyl(y)d(|z — yl)
In the absence of noise
F(D)
F(6)

where F' is the Fourier transform.

I=F_l[

For a real image I(n,,ns) the Fourier trans-

form is:
Jn'lrz b ]. J-‘I,.:'l i ].

F(klj .Ii’g) _ Z z E'.Zm'.‘.:;ngfﬁ-"g EEﬂiklnlle I(ﬁ’lj ﬂg)

?12:[] ﬂ.IZD
F(ki, ko) = FFTy[FFT[I(ny,n)]]

For the routines see for example Numerical
Recipes
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The problem with fluctuations
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original Poisson
statistics
. Fourier
Gaussian restored
smearing
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Figure 11: Lena restored by FFT: The original image (top

left) is sampled with Poisson statistics (top right) and

smeared with a 2D 10-bins Gaussian PSF (bottom left):

the Fourier restored image (bottom right) is similar to

the Poisson sampled image. In this case the noise term 13
N is neglected.
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Figure 12: Lena not restored by FFT: In this case the noise
term N is not ignored: the original image (top left) is
smeared with a 2D 10-bins Gaussian PSF (top right)
and the result is sampled with Poisson statistics (bot-
tom left): the Fourier restored image (bottom right)
cannot recover the information lost in the noise. An-
other approach, statistical in nature, is required.
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Figure 13: Einstein restored by FFT: explanation as in

Figure 1.
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PET: positron emission thomography




Positron Emission Tomography

1/4'/ \
Positron Emission Tomography

e

7\

Positron Emission Tomography

detector
Ting

detector £1 s

Positron Emission Tomography

detector #2

detector #1 T4




When true — obs = p —  deterministic methods (FFT)

can be used
v = Rep (19 Image

When true — smeared — obs = u — v — n statistical

methods must be used r'eslror.a.rion

n=v+p=R*xp+p

In the poissonian or binomial case we have to minimize:
—InL(p) = =3 In P(n;, 1)
i

In the gaussian case we must minimize

X’ (1) = X (vi — ) (V7)ij(y; — ny)

In 2-D, when Nj;(exp) contains fluctuations, we have to

minimize:

[N;j(exp) — N P;j(obs)]?
N P;;(obs)

(20)

—2InLnjv,p) =~ x* =%
]

where
P(obs) = P(v|u) P(n)

If all the pixel contents p are the free parameters/
to be determined the problem has zero DoF

This is a ILL-POSED problem with many (and more
probable) unrealistic solution!!




Explanation:

The smeared
distributions of two input
— distributions cannot be
distinguished if they
agree on a large scale of

x but differ by
spike solution smooth solution oscillations on a

HIGLY PROBABLE UNLIKE “micr'oscopic” scale much

smaller than the
many solutions give a good y? exper'imen‘ral resolution

the spike ones are more probable!

Cure: to add to x* an empirical regularization term C|p|.

or
to increase the DoF by using
or a parametric model

X° = x° + aC[P(true)] P(v | )P(u)—P(| ;210')

Y= axi+ C[P(true)]



Remember
p; By, random
and consider (95) as a form of the Bayes theorem

P(true;jlobs) o 3 Pyj(true) P,(obs;j|truey ;) = L(n|w)P(w)
it '
Bayesians say: posterior = likelihood x prior One max-
imizes P(true;;|obs) = F(u) (or minimize —F(pu)):

F(p) = In L(n|p) + In P(p) (99)

following the Maximum Likelihood (ML) principle.
The practical (no Bayesian) experimentalist introduces
an empirical regularization parameter o« and considers
the prior P(ju) as a regularization function C(p):

F() = o In L(n|p) + C(p) (100)
By keeping fixed the normalization:
vr = 32 fjfi; + pi = nr
i
the objective function is

The frequentist

assumes

P(u) =1

F(p)=alnLn|p) +C(p) + AMnr — X ) (101)

where )\ is a Lagrange multiplier

z—i':ﬂ—}.ltz?h;:ﬂ-r

21



The objective function to be minimized is
—F(p) = -2InL(n|p)—aC(p)+Anr—Xv;) (23)
i
i = Py = o [, fily) dy . .
where a > (. Some regularization terms: Regl-'larqza.rlon
e minimum second derivative (Tichonov) 1'er'ms

Cln) = — [ ()] dy =~ — MZE[ i+ 2ptie1 — pive]”

e minimum variance:

C(p) = —Varlu] =

= - i
e maximum entropy (MaxEnt)

fi |
Clp)=—->pilnpi=—-3 —In—
i P MT pT

® cross-entropy

Ju'i 125
(.“' - — Pi ln — =
) E (i g P[T #T qi

where ¢ = (q1,q2,...,¢,) is the most likely a priori 22
shape for the true distribution ;.



We have M boxes and a monkey that throws N ball
randomly into them.

What is the box-balls configuration of highest probabil
ity? Probability of a configuration:

1 N

Inp
p: = e
MN nllng! . TEN!

What is
4| ksl ) eal L] MaxEnt 272

M boxes and N balls

equal to

N balls labelled randomly from | to M

Inp=—NInM + InN!—>"In(n;!)

Stirling formula: n! = v2mnn"e™ — Inn! ¥ nlnn —n

Inp=—-NInM+NInN—-N+>n;—> n;lnn;

> pi=1, p,;:%, Inp=—NInM — N> p;lnp;

The most probable configuration means to maximize

23
Inp(p) =5 = —Zp.,; In p;



N;j(th) = NP;j(obs) = N Y Pyj(true) P,(obs;j|truey;) (25)

.I'J'jf

We write this equation considering the operator R:

The iterative
é;_@%ﬁ (27) pr'inciple

for £k — oo the series converees if g < 1|.
By applying iteratively (26)

pev1 = Bn+ (1 —BR)ur = Bn+ (1— BR)(Bn+ (1 — BR)pk—1)
Bn+ (1 — BR)n+ (1 — BR)*pr_1
= fn+B(1—BR)n+B(1—BR)*n+ (1 —BR)up—s...

k
= Y 8(1-pR)n.

From (27):

I—(I—,BR)k—I_I 3
= n—+R n=p, for k—o00.
HE+1 BR &) L 24

if [T — BR| < 1




Without 3 Wi+t = i+ [n— R *

Ghseres

60

. The iterative
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best fit
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hobbs

Entries 4093
cecocd Meanx 3234

Meany 326
RMSX 1208

RMSY 1807

The
iterative
Principle
without
best fit +
smoothing
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Consider the case with statistical fluctuations

; P—FF Tt
n=R*+u+r
To have regular solutions and to make the method ro-
bust, we must search for an iterative solution which -

minimize the y*:

2 The iterative
X =||H*#—n||2——Z(ZR, m.k— nﬁ*mn_nika- o
o algorithm +

Note that is the case in which .
the PSF depends on the pixel difference only beS"' fl1'
(translational invariance) Y,
In this case we consider R as an operator and we can
work with symmetric M x N matrices.

Minimum y? w.r.t u;; gives the equations:

9 2
X = Z(Z R‘i—-r._k—.ﬂ Hys — nﬂr) Ri—m,ﬁ:—ﬂ, =0

Otbrnn ik T8

D<m<M, 0<n<N.

Hence :

The itemd

. 28
1s obtained



It belongs to the family of the Newton-Raphson meth-
ods From (29):

2
L) ax

minimum
of ¥ 2

/

u
2
Mg =Wk - k—dx
d u

fie1 = pi + BeR * [n — R = p (30)

This formula minimizes y°. For example when (3, = j3:
pi+1 = i+ BR*[n — R* pul

= BRxn+(I— AR *

= BRxn+pB(I - BR) * Rxn+ (I — BR*)? * pp_1

k _ _ _ k41
= Z,BU—,BRE)I*R**H,:I Uﬁ}iR) BR*n — R n
i=0

The iterative
algorithm +
Best fit

29



Mice1 = pi + B R * [n — R * ] (31)

Previous method converges if
|\ —BR*R|| <1

when [ is independent of k. In this case

2
max eigenvalue of (R* R u)* p-!

0< 8 <

When ;. depends on k convergence is assured if (Rob-
bins and Munro 1951)

o0 20
lim gy =0, > Bv=o00, Eﬁi“‘imﬂ
N—=oo A =1 N=1

Next, the metha goged by adding a term

(32)

ik

||C*H||2=|Zﬂfk In ik / ot | a < 0
ik

The iterative solution becomes

pis1 = pg+ Ge[R*n— (R* R+ aC * C)uy) (33)

The iterative
algorithm +
best fit +
regularization

30



pie1 = i+ B[R *n — [R* R* py + o(In e/ pp + I

About 40 iterations, regularized with Maximum entropy

The iterative
algorithm +
best fit +
MaxEnt

31



e+l = pk + Br[R*n — (R* R+ al) *

About 100 iterations, regularized with the sum of squares

The iterative
algorithm +
best fit +
Tichonov

&0
50
40
a0
20

10

b

32



pi+1 = pie + B[R xn — (R* R+ al) * ]

The iterative
algorithm +

best fit +
Tichonov
regularization

&0 &0

a0 a0

40 40

30 a0

20 20

10 10
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The iterative
algorithm +
best fit +
Tichonov
regularization
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[1+] =t (4] [=] o [1+] = o4
— — — —
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ATHENA apparatus

Antiproton Accumulation +
Mixing with positrons

Na-22
Source
Positron Accumulator =
= et E
e 0 | 4 u.
= Ll
Antiproton Mixing 0 im
Capture Trap  Detector Trap L] I . ; ;
!
T 511 keV Y Mixing frap electrodes
Silicon micro 25 mm B I s i S —
strips — .
T
| e
g & J5 ¢
cst A~ £
crystals *E -100 Y P S
— E_ 125 | antipretons
TC E 1 1 1 1 1 1 1
511 keV Y 60 40 20 0D 20 40 60

axial position (mm)



From the ATHENA detector

Pbar-only
(with electrons)

|ﬁi|#|7..| ol
2151-05UU51152

Si sfrip detectors

DISTPIbUTIOH of anmhda’rlon vertices
when antiprotons are mixed with ...

cold positrons hot positrons

n

-h

o

b

ro




Vertical position (cm)

FIRST COLD ANTIHYDROGEN PRODUCTION & DETECTION (2002)
M. Amoretti et al., Nature 419 (2002) 456
M. Amoretti et al., Phys. Lett. B 578 (2004) 23

SIGNAL ANALYSIS:

opening angle
xy vertex distribution
radial vertex distribution

Number of events

65 % +/- 10% of

annihilations

—T T T - 1 = T
s =2 -1 0o 1 2 3

Horizontal position (cm)

SRR R T T are due to antihydrogen
Horizontal position (cm)

between 2002 & 2004

© Cold positrons
& Hot positrons

more than 2 millions
antihydrogen atoms
have been produced

Pure antihydrogen (MC)

v "
an&w‘# v

that's about 2 x 10-'°* mg

.. or .. 1000 Giga years for a gram

01 | | b by bovw b b by o
0

1 08 06 04 02 0 02 04 06 08

cos{ 0,) cos( by)

80

=4.7;
V190 +110

+/190

1 1 08 06 04 02 0 02 04 06 08 1

80 80

=6.9; —
v110
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Annihilation vertex in the trap x-y plane

Hbar (MC) BCKG _
(HotMixData) Cold Mix data

2

Celd
Nent= 144901

Mean ¥ = -0.0056
Meany = ({237
RMS & = 1,036
RMSY = 1,046

.

>

Pbar vertex XY projection (cm)

x Hbar + (1-x) BCKG ML Fit Result

Fit result|
backg % 43.7 +- 0.4 for -2.5<z<3

Hbar percentage

X =0.65+0.05 ‘




Iteratve best fit method

| S0luton |

T Celd
Wert= 144901
umx -0605
o  eany s o2
O B [ T* T 1034
: RMS y. = 10«\

The vertex algorithm resolution
function is gaussian with

Cold Mix o =3 mm

The 2D deconvolution reveals 39
two different annihilation modes



The iterative algorithms +
best fit + reqularization

» iterative algorithms are used in
unfolding (ill posed) problems

* they need a Bayesian regularization term
* when there are degrees of freedom, one
can use a best fit of a signal+background

function to the data

* in this case there are no Bayesian terms
(pure frequentist approach)
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Conclusions

e don’t be dogmatic

e use Bayes to parametrize the
a priori knowledge if any, not
the ignorance

e in the case of poor a priori
knowledge, use the
frequentist methods

42



The objective function to be minimized is
—F(p) = ~2In L(n|p) — o C(p) + Anz — S v;) (24)
i

Some choices of o« > 0 are:

* Bayesian 1 Regularization

&.—

L parameter

usually too much smoothing

e A= +allCull? >0
we can regularize the solution by choosing y* ~
DoF = number of pixel N, with the condition:

A-N
= ——
1Cwl[?
o 2 2
4 E ly=R*WL [ + ofC ul
£ E
[ a4
~ |25
=
T 2N
2
£
best <—;:t'agreemenl 43
solution independent of smoothing
gIC ul 2



The problem with fluctuations
From v — u deterministic methods can be used
v=~ Rpu (97)
From n — v — u statistical methods must be used
n=v+p=Ru+p

In the poissonian or binomial case we have to minimize:

—InL{p) = — Zln P(ni, v;)
In the gaussian case we must minimize

X (p) = %ﬁ(w =) (V7 )ij(vj — ny)

These estimators are unbiased:

Eljij] = Z:_:(R_l).r'i Eni — pi] = (R jivi = 1

T

In 2-D, when Njj(exp) contains fluctuations, we have to
minimize:
[Nij(exp) — N Byj(obs)]?

2
X" =2
ij N Fij(obs)

(98)

where
P(obs) = P(v|u) P(p)

44



Fourier techniques
f(z) = [ F(t) e dt

Convolution:
f(@) = [ 9(y)i(z - y)dy
JE@)yemiet dt = [ G(t) vt Ar) e 0t g
[ F(t)e* ™ dt = [ G(t) A(t)e*™ ™ dt — F(t) = G(t) A(t)

Correlation

Corr(g,8) = [ g(z +1y) 6(y) dy — G(H)A™(t)
if the functions are real

G(t) = G(—t)*, Corr(g,8) = G()A(—t)
Autocorrelation (Wiener theorem)

Corr(g, g) = |G(#)[?
Total Power:
P(f) = [|f(@)Pda = [|F(t)Pdt

Power Spectral Density (in the Fourier space):

PSD(f) = |F()2 + |F(-t)> L™ Fr@)P 0<t<

45



Conclusions

* best fit minimization methods are crucial
in physics. They are mainly frequentist

* they are based on the ML and LS algorithms

(they are implemented in the
ROOT-MINUIT framework)

* Yo judge the quality of the resulft,
frequentists use the y> test
bayesians use the hypothesis probability

- Bayesian a priori hypotheses should be used with
informative priorsl!l



i PﬁfF L mﬂnm TE;
Linlv,p) P(p)

Bayesians say: posterior = likelihood x prior One max-
imizes P(true;;|lobs) = F(p) (or minimize —F'(pu)):

F(p) =InL(nlv, p) +In P(p) (21)

following the Maximum Likelihood (ML) principle.
The practical (no Bayesian) experimentalist introduces
an empirical regularization parameter « and considers
the prior P(u) as a regularization function C(pu):

F(p) =InLnly, p) +aCp) (22)

The present status of the Bayesian-Frequentist dispute:

e The The Bayesian: always choose o noninformative
prior; reject the concept of the ensemble of iden-
tical experiments and give a probability to all the
hypotheses.

e The (frequentists) physicists: usually I avoid to give
any probability to my hypotheses: they are rejected
by the experience (falsification). I use only informa-
tive priors into the analysis when certain a priori
information is available.

Image
restoration

a7



2D Unfolding

A picture in a z — y plane is the result of a double
dimensional folding, where the true points are smeared
out by detector effects.

N=3 Nijexp) (93)
Lj=
N is the total number of events and Njj(exp) is the
recorded number of event in the pixel placed at the
ith-row and jth-column.
The observed Njj(exp) events have to be compared
with the expected values Nj;(th) predicted by a model.

i'\'rij{t.h) = i'\'r.ﬂj{ObS) = ﬂ'?z Hfjr(tI'LlE‘:) Pt.(obsiﬂtrueiejr) , (94)
.El'jf

that is, the number of events observed in the ijth-cell is
due to the presence into the i'j'th-cell, times the prob-
ability P, that the PSF shifts the point from the ¢'j’ to
the ij-cell. One has to sum on all the cells near the
ij—one.
In eq. (94) the normalization is understood. In prac-
tice, from (93, 94), one has

Pyj(true) P,(obs;;|true;y;)
EU [Ef'-.j'r :'rjr(tTU'E) P_E[:DbSUHI'UE{'j'}]

P(trueiﬂobsirfj = {95)
In the case of a two dimensional Gaussian point spread
function PSF:

L e (i — @) (i — yeg)’
2T 0,0, 202 202 ’
(96)

P, (obs;j|truey ;) =



In summary, we use

M1 = pi + Bln — R * ] (28)

with the initial condition The i 1'e r'crl'i ve

Ho =T . o o I
The convergence is assured if pr‘|nC|p e

II—BR| <1

Since |1 — Bz| < 1 implies 0 < 8 < 2/z, in the case of
the operator R, which can be transformed in a square
matrix
R =(Rxp)p
we obtain the condition:
2

0<fB< -
g max eigenvalue of R/

Note that we works always with square matrices R * p,

p, p~t and R

However, this step must be repeated at each iteration

This method sometimes gives

spectacular result!

However, often it gives irregular solu-

tions. 49



Stopping Rules

e ? variation

_-‘lrfxz‘-."{ _ER; _ )2
2 2 Yi ij fVijljik)
X;;=||y—R*#-k|| = Z

i Sij Rijio

2 _ .2
X EX.E'.—I < 1{]—!3
Xk-1

If the regularization is good, one has y} ~ DoF.

e Signal to noise ratio (usually measured in decibel)

Silui — yi)? ]
SNR=10lo
S10 [Er(ﬂi — HMirue i)g

where iy, is the true image. This quantity is used
in the MC simulations during when the true image
is known.

e convergence of the solution

|k — pe—1||*

<1078
-1 |?
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Statistica ITI

Unfolding
techniques
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