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0.1 Some units

e~ =1610"1" C

me = 9.11 107%° ¢=19.11 1073 Kg

1 eV 1.6 107 Joule

¢ = 2.997 10° m/s

9.1 10~31Kg (2.997)2 1016 2 10-311016
M. — m? = g(2.997)° 107 (m/s)” 1071107
1.6 10-19 J 1019

— 51 10%V = 0.511 MeV

Often the masses are measured in energy

electron m, = 0.511 MeV

proton m, = 938.28 MeV

neutron m, = 939.55 MeV
1 AMU = 931.48 MeV
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0.2 Kinematics

2 e
E =
\/1—02/02 1 — (32
me;  mef

pmm‘m

E? = m2c + p2c?
In nuclear and radiation physics often one uses
the “natural” units

c=1, masses and energies in MeV

me> —sm , plc—p

E=—""_ MeV

i
B mc8/c . mp
VIR VI-P

E2:m2—|—p2

MeV/c

The gamma factor:
1 E

7:,/1_52:77102

(y—1) is a measure of the kinetic energy of the
particle in units of its rest mass.
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Kinematics

o mce®  me®om
e iF P
oo omet met
TR R 1R

mp

p=—— MeV/c—)pc:m—ﬁ

V1= 32 V1 — 32
Energies and masses are in MeV, momenta in
MeV /c. Eiw = E the energy is the total one!

m m2 pC
Bt = Buantm = —2 g J1- 12
ol /1 — 32 El,  Ei

Example: the velocity of 1 MeV electron:

s— |1 0.5112 004
- (1+0.511)2 7

. is 0.94 times the light velocity (rel. part.)
Example: the velocity of 1 MeV proton:

038.282
— 1 —0.046, p~mfB =432 MeV
& \/ (1 + 938.28)?  pmp eVie

. is ~ 4% of the light velocity
(non relativistic particle)
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0.3 The Boltzmann distribution

L
(2mv2)3/2

[kT
UV = —
m

Energy distribution of a particle when v is a vector of
gaussian components with mean velocity /k7T/m
Most probable energy: %kT
Mean energy: kT
Velocity variance (diffusion): v} = &L
When the variable is the kinetic energy
L

Emfu =FE, &v=4m*dv, mvdv= dE

fv)d*v = exp(—v?/2v7) d*v

2mn

R E'?exp(—E/kT)dE . (1)

n(E)dE =



0.4 The low energy limit

In nuclear physics often one adopts the
“natural” units: ¢ =1
and the relativistic formulas. They are very
useful even in the low energy limit (contrarily
to a widespread belief)
Boltzmann constant: k = 1.3806621071° erg "K' !
is often used in energy units:

leV 1 meV
11604 °K  11.6 'K
that is 1/k ~ 11.6 Kelvin per meV (millielectronVolt).

Room temperature: 290/11.6 ~ 25 meV
Low energy limit

kE=8617 107" MeV K1 =

1, 1 0 1

B, = B = §mv = §mc Z= §m52
2F)
B=1
m

Example: find the proton velocity at 38" C.

1
By = kT = (273+38)/(2+ 11.6) = 13.4 meV

[2-0.0134
B =\ 5515 — 04 107° in units ¢ (1618 m/s)



0.5 Quantum wavelength

A=t
P pc

h c
)(:_
pe

hc=197.3 MeV fm (1 fm = 107" cm)
Example: the 1 MeV neutron wavelength

oF
B=1/"E =0.046

m

pe= T8
V1-p

A =27

= 43.35 MeV , p=43.35 MeV/c

197.3

43.35
We obtain the dimensions of the nucleus.
Conclusion: MeV is the order of magnitude of
the nuclear binding energies.

wavelengths (dimensions of the
physical objects) and energies are related by

(1)

fm =285 107" cm




Quantum wavelength

Example: the 0.025 neutron wavelength
(room temperature)

2 % 0.025
B = \/ . =7.29-107° ~ 2200m/s
939.55 - 106

pc=mfB =939.55-7.29-107°% = 6.85 - 1073

197.3
T
6.8510—3
We obtain the dimensions of the atom.

A =2 fm = 1.81 1078 cm
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0.6 Massless particles

E? :p2c2 +m2ct m—:(Q E = pc

p=F

h c h ¢ MeV fm
A=2r— =2
7Tpc "E MeV

Example: wavelength of 88 keV pho-
tons

197.3
A=2r— " —=1.41-107"
0.088 U em

This is the wavelength of the k-electrons,
coming from the inner atomic shells

[ or % heavy particles
A= <
| 27 % massless particles

11



0.7 Atomic density

If A is the mole and N, the Avogadro’s num-
ber, the number of atoms N/cm?® for a sub-
stance of density p is given by:

NP Ny [atoms]

A cm?

1 amu = 1.66053 10~24g = 931.481 MeV
The density p for gases:

PV = % RT, R-= 0.0821m§1t:zK
plika/m®) = pls/1) = 1000 p(g/em®) = 2 = 1218 2 platm)
The Avogadro number:
. almu = 6.022-10% — Ny

Example: Sodium

0.97 6.022 10%
22.99
Example: Na CI

— 2.54 10?2 atoms/cm’

2.17 6.022 1023
58.44

— 2.24 10*%atoms/cm’
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0.8 Nuclear Reactions

a+b—c+d
Ek(a) + Ek(b) +mg, +my = Ek(c) + Ek<d) + Me + My

Conservation laws:
e nucleon number conservation

e charge conservation
® momentum conservation

® energy conservation
Q-value
Q = (mg+my) — (m.+my)
= [Ek(c) + Ex(d)] — [Ek(a) + Ex(b)]
( > 0 exothermic reaction, lighter final masses
() < 0 endothermic reaction, heavier final masses

The relativistic energy conservation applied to
the decay of a particle M (for example into 2
particles) defines the binding energy AM:

M=mi+mo+ ErL — M >my+my
AM = M — (my + msy) = Binding Energy
Binding energy for a nucleus of mass M 4:

A=Zmy,+ Nm, — My
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0.9 Binding Energy and Mass excess

Binding Energy or Mass Defect: the energy spent to
create the bound system
Mass excess: binding energy on the '2C scale
Example: Calculate the binding energy of the external
neutron of the ¥C nucleus.

_939.55

= " — 1.008664 2cy — 13.008664
n = 93748 ’ +

13C = 13.00335 experimental value
A, = 13.008664 — 13.00335 = 5.31 - 107°
A,(MeV) =5.31-107%-931.48 MeV =4.95 MeV
From the mass excess tables: Am(1?C) = 3.125 MeV

Am
Am = (M — A)931.4 M=——+A
m = ( )931.48 — 931.48+

Hence: M (1*C) = 3.125/931.48 + 13 = 13.00335
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0.10 Nuclear Fusion and Fission

FUSION FISSION
@._@ deuterium  1875.62 MeV 218,896.8 MeV
Fuel Fueel
8@) titium  2808.92 MeV ©  neutron  939.57 MaV
Average fission yield 215 MeV
; alpha 3727.38 MeV

Pmul:ts E /\-/\
(N) neutron 93357 MeV Senats .

A 80 {10 130 150 180

D-T fusion yleld: 17.6 MeV

Fractional yield: —-0-MeY_ _ ooa75 215 MeV_ _ 50095

4684.54 MeV 219,836.37 MeV
Calculation of the

:;:rzre'r:::funlls o 338X 10"y Perkg of fuel: Ame® 880 % 10"
energy produced 1 UNIT = energy

from 1 kg of fuel

by fusiﬂr?and tission. 676 on S 176

citizen in 1 year.

FUSION _ FISSION
fast deuterium ”] .
particles = ( .
&
m=2 m=3

1 UNIT = energy
use of one LS.
citizen in 1 year.

Maggr =4.98 Convarsion
E ={.02)¢? 10 energy E=(2)c?
676 units per kg fuel 176 units
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Nuclear Fusion

Fe

& The “iron group® « yield from
g of isotopes are tha ! nuclear fission

I mast tightly bound
g. Y SENi {most tightly bound) |
i :
é = 6 ggFe Elamenis heavier
L E - 545 e ! than iron can yield
&z H 2 havesaMey!  Enerdy by nuclear
5o H per nucleon | fission.
@5 44 yieldfrom binding energy, |
@ = nuclear fusion :
oo
£33 [
E E ¥ A J
ma 2 :

¢+ Average mass :
1 of fission fragments o ;
= ks about 118. BEU s
i 1 | 1 1 1 1 | 1 1 | 1 E| 1 1 1 1 | 1 1 1 1 | 1 :
100 150 200

Mass Number, A

Two light nuclei give a heavier and more stable nucleus

d+d—t+p

H4+*H 3 H+p

Deuteron binding energy:

938.28 4 939.55 — 2.0136 x 931.5 ~ 2.23 MeV

Tritium binding energy — 8.48 MeV
Reaction Q-value:

2my+2my, —2Ey(*H)—my—2m,—m,+Ey(*He) = Ey(*He)—2Ey(*H)

8.48 — 2 x 2.23 = 4.42MeV

This energy excess transforms in the kinetic energy of

tritium and proton
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Nuclear Fission

Fe

B The “iron group’ : + yield from
5 of isotopes are the ' ! nuclear fission
- st lightly bound | v

yield from binding energy,
nuckear fusion i

§ -~ L 5 s:Ni {most tightly bound) |

T :

g= AF 252 Fe : Elaments heavier
@ = I 28 Fe H than iron can yield
= 26 havesaMev;  Eneray by nuclear
2a per nucleon | fission,

o =2 | |

23 4

[

=8

55

=

a

]

E Average mass [
1 of fission fragments o :
I~ vis about 118. 35U .

1 | 1 l 1 1 1 1 1 1 1 :| 1 1 I 1 | 1 l 1 1 1 1 :
100
Mass Number, A

A heavy nucleus breaks-up into two (or more)
lighter nuclei

257 =135 A 4190 4 average values

Binding energies:

A(PPU) = 235 x 7.5 = 1762 MeV
A" A 410 A) =235 x 8.4 = 1974 MeV

Q-value: 212 MeV
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0.11 Cross Section

2
I = particles/cm s
,/// S =Ccm 2

X =length (cm)
. 3
p = density g/cm

G = Cross section

p X = transparency

N= atoms/cm

AN

# collisions

- :aISXN:aISX% (2)

collisions/cm’s = gIpX "4 = cINX = SIX

pX (g/cm®) = transparency

Y= 0N = o0pN4/A (cm™) = macroscopic cross section

Example: ?C, 0 = 2.6 barn, I = 5 - 10° neutrons/s cm?,

X =0.05 cm

oIpXN4/A=26-10"*5.10% 1.60-0.05-0.602 - 10%*/12
= 5.2-10% int/cm? s

6
XNA _ 5.2 10 =1 10—2

Interaction probability: opX—¢ = S8 T

18



0.12 Mean Free Path

igs
m = [I(z)—I(z+dx)] = —dl = oIN dz =X dx
cm? s
We obtain the equation
df
— =13
dx
which has as a solution:
I(z) = Iy e =* (3)

the exponential attenuation of the beam.
The important quantities related to this solu-
tion are:

surviving probability : I(x)/Iy = e "
“death” probability : [Iy — I(z)]/Iy =1 —e "

probability density for a path z: p(z) = Ye 7
mean free path (cm):

> 1
)\—/:L'p(x) dx—/ rYe  dr = =
0 Y

Monte Carlo mean free path simulation
(0 < RANDOM < 1):

-5 — RANDOM — m:—%hmfRANDOM)

19



0.13 Molecules

R= VS _ NISX = a% ISX = S ISX
S

How to calculate cross sections o7 or the interaction rate
R for molecules and compounds, starting from those of
the elements?

Molecule M= X,,Y,, A =mA,; +nA,

Atoms simply sum-up (cm?)

0T = MOy + Noy

Macroscopic cross sections sum-up (cm™)

N N N, N,
:/)TAmam-i-pTAnay:WxNax-l-WyNay:mEx—l-nEy

The event rate can be written
independently of the density!
N X 2
= 72 2 dimensions [ﬂ] (4)
PP g

Xr

Ny N Ny
= —M T _
mA; +nA, ¢ mA; +nA,

A, A, A, T mA rnd 4,00 O

> (), (%)
— =w, | — _|_wy -
p P/ p/,

where w, and w, are the molecular (weight) fractions
wy = mA;/(mAy +nAy) (H20, wy =2/18,wp = 16/18)

If one uses ¥/p instead of ¥ the thickness X must be
expressed as the transparency p X.

n oy

> | M

20



0.14 Mixtures

In a mixture the number of atoms of each

species (z, y, ... ) is related to the weight frac-
tions (wy, wy, ...):
_events Ny Ny

R =

= lamwpr—x+aywypA—y] ISX

This formula defines the quantity ¥/p:

R _ events cm? _ [wa:& o, &] 1S X
P g8 Pz Py

formally identical to the formula for molecules:

2 (5) o (5), [F]

For gas mixtures at constant p,7' (M is the mass):

o ="pr vzz:vz:zwiMﬂ, pV:ZwiMRT

A A, p A

i

1 W; 1 Wi

AT LA p = pi

where p; is the density of the i-th species at the same p
and 7.

21



Volume and weight percentages

When mixing gases, often one knows the
volume percentages

If one mixes two gases 1 and 2 with volume %
« and # and atomic numbers A; and A,:

wiM RT wsM RT
V,=aV = e /A L
A p g P Ay p
From the gas law pV = M RT/A:
a_w  p_w o ood B _
A" A AT A A T T

CkAl + 5142 = (’U)l + ’U)Q)A = A

Therefore the link between weight w, and vol-
ume percentages «, [ is:

- aA; W — B A
T aAi+BAy T T A+ BA,

and these w,; can be used in the previous for-
mulae as weight percentages.

wq

22



Molecules and Mixtures

The density p does depend linearly
on the atomic weight A.

The cross section of many effects
depend linearly on the

target atomic number Z

Hence, the average ratio Z/A can be
defined as

<A> ZZ: A; z; > A A Do njA,

However, (I) defined in this way is un-
derestimated, because in a compound
the electrons are more tightly bound
than in free elements.

23



0.15 Molecules and Mixtures

Apart from the density, that is in terms of number of
atoms, a mixture can be thought of as made up of thin
layers of pure elements. Hence molecules (compounds)
and mixtures can be treated in the same manner (Bragg
principle of additivity)

(D)), o

where w, and w, are the molecular (weight) fractions for
compounds w, = mA,/(mA;+nA,) (H2 O, wy =2/18,wp =
16/18) and fractions by weight for mixtures, where p is
the density of the mixture.

>, = No, is the macroscopic cross section calculated
using the density of the compound or mixture and the
cross section of the species z

(X/p), is the macroscopic cross section calculated us-
ing both the density of the aggregate where > has been
measured and the cross section of the species z.

Remember

events :EpXIS
S P

if one uses Y /p instead of ¥ the thickness X must be
expressed as the transparency p X.
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Examples

Absorption cross sections: H =3, O =8 barn

1) Calculate the interaction probability per unit
time in 1 cm of water.
For the probability: [ =1/cm?, S =1 cm

b N
PI% _ oNX = JpTAX

S
o =20y + 0o =14 barn
b 6.022 10%
P —oNX =14 107X Ix —————x1 = 0.077 = 8%
S

2) Calculate the interaction probability per unit
time in 1m of gas mixture 80% H, and 20% O,
in weight at NTP.

Densities: py = 0.0899 mg/cm?, pp = 1.428 mg/cm®.

Mixture density:
1 0.8 0.2

= —  p=0.1106 5
> 0.0809  1.428 P mg/cm

b N N
p=2 [20Hpr 4 —I—ZJOwOp—A] ISX
S AH2 AO2

For the probability: 7 =1/cm?, S=1 cm

0.1106 1073 0.1106 10~3
P = [2-3 107%.08. ————  192.8 10—24-0.2-—]

D) 32
X  6.022 102 x 100 = 0.0166 ~ 1.7%

25



0.16 Gamma Radiation

X-ray

A-ray

ronization ionization

Compton
Scattering

Longer

wavelength

Photaionization |

X-ray

A

X- ray X-rays
interactions

X-ray photon energies

are far above the

fonization energies of

atoms, lonization
energy

_...-@® [positron

X-ray

I._..I i

1. [Pair Production|

" electron
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0.17 Photoelectric effect

Is the dominant process at low energy, in the so.called
X-ray domain (X-ray: low gamma with low energy of
the order of the atomic transitions)

mass attenuation

: 2
7K
10 inlead m“Kg /

MeV

hv =V + E(e_)k

Vy is the extraction potential, F; is the kinetic energy
of the electron.

Z5

E7/2

The photoelectric effect does not happen on the free
electron (energy-momentum conservation)

The atom is often deexcites with the emission of a sec-
ondary gamma (soft X-ray radiation) or with a low
energy electron (Auger electron) when the soft X-ray
converts into the atom by the internal photoelectric ef-
fect.

Oph = VAD YRR,

27



0.18 Compton effect

From the energy conservation:

htm=h/+mé, v=>C°, m=_"1
€ 9 A ) \/1_7[32
h
N == (1 — cosf)
mec
Output photon energy
hv hv
hv' = = 7
Y 1+ ¢€(1—cosh) ’ “T e (7)
Recoil electron energy
€ (1 — cos)

E,=hv—hV =hv

14+¢(1—cosb)

2
Erax = hul +€2 = # = 180° (Compton edge)
Gamma backscattering energy
hv
h ack — h - Em X — —
(A Joack = v = Bnax = 775

The cross section is given by the Klein-Nishina formula;
it decreases by decreasing the energy as 1/(1+¢) and at
high energies (hv > m.c?) the angular distribution is
very forward peaked

28



0.19 Compton effect. Angular distribution

90
1keV

TOMEV )
0

The angular distribution of the scattered photon be-
comes strongly forward peaked with increasing the en-

ergy.

180°

The angular distribution is given by the famous Klein-
Nishina formula:

do ) 1 1+ cos? 6
= = ZTO
dQ 1+ w(1—cosb) 2

y (1+( w?(1 — cos §)? )

1+ cos?0)[1 4+ w(1 — cos )]

where r( is the classical electron radius

62
o —2.817 107" cm

ATegm,eC?

E'7 hv
w= 7 = 2
MeC MeC

29



0.20 Pair production

The reaction has a threshold of 2m, = 1.022
MeV:
hv = et 4+ e~ + recoil

to conserve energy-momentum, the reaction
must occur with a third electron or (more of-
ten) with a nucleus, which absorb the recoil
momentum.
When the recoil is totally absorbed by an elec-
tron, one observes two energetic electrons and
a a positron.

For relativistic energies the cross section for

producing a positron with energy between
(E_|_, E_|_ + dE+) iS:

e2 1% 72 72
— ~8.107%0 = 2
70 [m(;?] 137 37 o]

= w w —wiw_ | In| —= ]| — —wrLw_
dE ~ hv s S Z1/3 9

where wy = E/(hv).
At high energies the limit for the total cross
section is:

op 2 1209
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Figura 228 Formasione di una coppia elettrone-positrone nel campo-di un clettrone (iripletto),
Formazione di una coppia nel campo di un protone (coppial, (Camera a bolle & idrogeno), [Foto
gentilmente concessa dal Lawrence Radiation Luboratory]
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g
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10 mb i L - — - A
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Photon Energy
Figure 23.11: Photon total cross sections as a function of |
energy in carbon and lead, showing the contributions of different §
processes:

Tp.e. = Atomic photoeffect (electron ejection, photon
absorption)
CTcoherent — Coherent scattering (Rayleigh sca.tterlng-a.tom

neither ionized nor excited)

Fincoherent = Incoherent scattering (Compton scattering off an
electron)

xn = Pair production, nuclear field

Pair production, electron field
G nuc Photonuclear absorption (nuclear absorption,
R usually followed by emission of a neutron or other
particle) 4

From Hubbell, Gimm, and @verbg, J. Phys. Chem. Ref. Data
9, 1023 (1980). Data for these and other elements, compounds, }
and mixtures may be obtained from f
http://physics.nist.gov/PhysRefData. The photon total
cross section is assumed approximately flat for at least two ™!
decades beyond the energy range shown. Figures courtesy
J.H. Hubbell (INIST).

Carbon and Lead
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0.21 Attenuation coefficients

In the case of gamma interaction

1

X = W= fiph + fipp + pe = No [c_m]

Gamma ray intensity:

— 2
I=Ie " =er"

p X % transparency
cm

The quantity u is the attenuation coefficient, so that the
intensity [y(1 — e #”) is that of the gamma’s that made
an interaction, not the intensity of the absorbed ones:
e Photoeffect: 7 is absorbed and the photoelectron(s)
carry out the energy (total gamma absorption);

e Compton effect: v loses only a part of the primary
energy;

e Pair Production: the primary ~ annihilates into a
et e~ couple, but the subsequent e™ annihilation
produces a v v couple, so that part of the primary
energy remains in form of electromagnetic radiation

Sometime the absorption coefficient u,, is used:

W=FET absorbed energy

cmd s

where FE is the 7 incident energy and I the flux.
It is found experimentally or evaluated by Monte Carlo
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0.22 Build-up factor

The uncollided beam
]p = I() e HT

is the area of the peak at the exit of an absorber. The
presence of Compton scattering and pair production fill
a tail of lower energy v to the left of the peak.

photoeffect

)\

beam energy
energy

+ Compton and
Pair production

/

)

energy

The Build-up Factor multiplies the uncollided flux to
give the correct total flux (at all the energies) after the

absorber:
I(z) = I1)B(pzx)e ™
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Build-up factor: example

2 MeV energy v, I = 10° v/cm?
impinging on a lead screen 10 cm thick.
Calculate: a) the uncollided flux b) the out-

coming flux

a) From the tables, 2 MeV ~ on lead:
u/p=0.0457 cm?/g, p=11.34 g/cm?
@ =0.0457 x 11.34 = 0.518 cm™ !,
mean free path = =1/ =1.93 cm
@ X =0.518 x 10 = 5.18 mean free paths

~

I,=10% e > ~ 5,63 10° >
cIm-s

b) from the build-up tables: B(5.18) = 2.78

oy
cm?s

I(X) = B(uX)I, = 2.78x5.63 10° = 1.56 10*
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Build-up factor: isotropic source

A

//\

=im [am

41 R? cm?s

Uncollided flux: g
I, = il
P AnrR2 ©

Outcoming flux:

S

Iy = 47 R?

Br(uR) e %
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0.23 Gamma spectrum in a small detector

T T T T T T T T T T T
T 1T T T T T T T T T T T

a, e photoelectric effect; b Compton effect;
c pair production; d backscattering;
f Compton edge (En.x see page 28)

hv _Emax hv -m Emax hv
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Gamma spectrum in a big detector

All the processes release at the end the primary v energy
The material surrounding the detector can give:

a backscattering; b 0.511 MeV annihilation ~;

¢ X ray from photoeffect in the screen;

full
energy
peak

hv
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0.24 Charged Particles

The charged particles are:
et e~ p « ions (charged nuclei) nuclear fragments

Historically, e™ and e~ are called 8 rays ad the e~ com-
ing from the inner atomic shells are called ¢ rays

The a particles or a rays are simply the *He nucleus.

All the charged particles in matter are subject to:

(1) continuous energy loss by ionization

dE) { MeV /cm
coll

collision energy loss <E MeV/(cm? g)

(2) continuous energy loss by radiation
(when E > mc?, v > 1)

dFE MeV /cm
bremsstrhalung Fr MeV/(cm? g)
rad

. ( dE) ( dE)
Stopping power : | — + | =
de coll de rad

(3) Coulomb collisions with nuclei (scattering)

barn =10724 ¢m?
Tsc fm? = 10726 ¢m?
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0.25 Energy loss by collisions

Due to the long-range Coulomb force, the collisions with
the electrons of the absorber atoms are so numerous
that they appear as a continuous process.
A collision can give the atom ionization or excitation
and these processes are used in the detectors of charged
particles
The collision energy loss is well described by the
Bethe-Bloch formula:

dE Are 22N Z [1 | 2Me? B2V Tnax ,82]

T dz mec252 |2 " I?
227 [1. 2m.c?B*y*Tax MeV
= 0.3071p— |=1 B2
T [2“ Iz ﬁ] [cm]
z,Z are the atomic numbers of the projectile and ab-

sorber atoms and
4me* N4/ (mec?) = 0.3071 MeV cm?/g (8)

me and M are the electron and projectile mass (eV)
Thax 1s the max energy transferred to an electron

T 2mec? 322 B 1 (9)
P14 2yme /M + (me/M)? 7= /1- 32

B =1—v%/c* where v is the projectile velocity

p is the density and [ is the ionization potential:
I~12x 7 [eV]

All the charged particles follows this formula!

Some minor corrections at very low and very high en-
ergies are necessary.

Often it is used also: —3E [MGV sz}

d(pz) g
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Energy loss by collisions

The collisional energy loss has a general behaviour as

dFE 1
dz oc

that is more the particle is low more the dF/dz is high

Bragg curve (Bragg peak)

i \

dx . .
single particle

‘\‘ parallel

' beam

distance of penetration

This behaviour is more and more evident by increasing
the projectile mass and, at the same mass, for antipar-
ticles (Barkas effect)

Example: 1 MeV Electron on an Al absorber

E:\/% (140.511) = B = /1 — m2/E% = 0.94
2=1, Z=13, A=27, p=2.7 g/cm®, v =2.93
Tinax = 0.987 MeV, I =12 x 13 = 156 eV = 156 106 MeV

FE
(f— = 1.480 MeV cmZ/g =4.00 MeV/cm

px
(The more precise result with the density correction is 1.473 MeV
cm?/g.)
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Mixtures and compounds

From (6) and pages 20 and 24:

d?i) :; . [d?f)] [MVTm]

When the total energy loss is calculated
the thickness must be expressed as the transparency.

dE
d(pz)
Range

0 dz
R:/ 4z g
g dF

This integral must be done carefully or solved with a
simulation

AFE = p T

p— dE” dx
dx —

\E’ /

More and more thin layers are added
until the energy is zero.
The total path is the range
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0.26 Radiation Energy Loss

According to Maxwell theory an accelerated (deceler-
ated) charge loses energy by photon emission.

This radiation is called synchrotron radiation (from cir-
cular orbits) or bremsstrahlung (motion in matter) when
a fast (y > 1) charged particle decelerates in the field
of a nucleus partially screened by the atomic electrons.
This is as an X-ray machine works.

Useful formulae for energy loss calculation (MeV /cm):

[ dE] 0.3071E Z(Z +1) p 9F 4 .
— | — e — (41 —_ = E 137 . A /3
| dz |4 4mm.c2137 A [ nmec2 3] 3 < meC
(dE] 0.3071E Z(Z +1) p . )
| dz - 1411832713, E > 137Tm.? Z~/3
| dz | .4 4mm,c?137 A[ n( )] > meC

they are accurate within 10+ 20% with the standard ta-
bles. Note the asymptotic behaviour as ~ EZ?

The mean angle for photon emission is

MeC
Y

(6 = ™
Most of radiation lies inside a narrow cone along the
incident charged particle direction. The cone is more
and more narrow with increasing the energy.

Example: electrons on Al nuclei with 1, 10, 100 MeV:
Fy =1.511, Ey =10.511, E3 =100.511 MeV,

Energy loss at the three energies:

dE/d(pz) = 0.0206, 0.335, 4.09 MeV cm?/g

Accurate table values: 0.029, 0.287, 3.71 MeV cm?/g.
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Radiation length

At high energy the bremsstrahlung follows the
rule (remember (8) at page 40):

. [%] - OiOZ;Z;Z 1;“7”% 4In(1837V3)E = XLO E
which implies an energy loss of the type
E = Ege /%0 (10)
where
X, 4mm, 137 1 -

T 0.3071 Z(Z +1)" 41n(1832-173)

There is the more accurate empirical formula
of Dahl (data interpolation):

716.4 A g
Z(Z +1) n(287/v/Z) = cm?
The radiation length X, (sometimes denoted
as Xp) is the mean distance over which a high
energy particle (electron) remains with a frac-

tion 1/e ~ 37% of its initial energy, the remain-
der being lost by bremsstrahlung.

The radiation length is the characteristic dis-
tance for describing the electromagnetic cas-
cades.
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Radiation Length

Since the radiation energy loss depends on the
atomic number as 1/A, for a mixture or com-
pound the usual rule follows (see page 20)

dFE dFE
w2 [a]

From this an approximate rule follows also for
the radiation length:

T NAL RN A8 4
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0.27 Stopping Power
4B _[dE] | [dE
de B dz coll de rad

Mev cm2/ g

100

— Bethe Bloch

10 —

bremsstrahlung
radiative
losses

minimum
ionization

0.001 001 0.1 1 10 100 1000 104 107

By

All the incident particles have a region of
minimum ionization. MIP: minimum ionizing particle:

! dE ] o MeV cm?

dlpz) | \p g

for gy ~ 3.

The general rule for et e~ collision/radiation balance:
dE/dz);a EZ EZ 800
( / 5[;) d ~ ~ — Ecrit(MeV) = 7 (11)

(dE/dz)con 1600 m.c? — 800
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0.28 Positronium annihilation

et +e =v+7
Annihilation into a single photon is possible with an

electron bound in a nucleus, but the cross section is
much lower (< 20%). The cross section is:

et 1

)62 3)6 1
m2047 + 1
e €

-1

Ye + 3
Ve —1

where v, = E/m.c®>. The cross section peaks for v = 1,

In(ye + /72 — 1) —

Oann =

I.L

0 o 20 30 40 S0 60 70 80
Y

that is for positrons at rest, where the e* e~ system can
form the positronium:

singlet et e~ — 2+, 0.511 MeV each, lifetime 0.1 ns;
triplet et e — 3+, lifetime 100 ns;

Triplet:singlet is 3:1, but in dense media, due to the
longer lifetime, the triplet undergoes many collisions
that favour the transition to singlet and the sudden de-
cay into 2 v (2 dominance).

47



0.29 Energy straggling (dispersion)

The stopping power in a thickness X of absorber is the
MEAN VALUE of a statistical process

For the Central Limit theorem for thick absorbers (AE/E >
10%) the distribution is Gaussian.

For thin absorbers the distribution is strongly asymmet-
rical with a long right tail in the lost energy (Landau
and Vavilov). The kind of the distribution is decided
by some scale parameters:

the maximum energy transfer to an electron (page 40)

o 2mc2 322
P 4 2yme /M + (me/M)?
the typical mean energy loss (page 40)

0.3071 2%2Z p
= — =~ X M
9 5 5 A eV
the variance of the distribution
2
0% = € Epax (1 - %) MeV? (12)

® £/ FEn.x < 1: several collisions: Landau distribution
® {/En.x ~ 1: many collisions: Vavilov distribution

® {/En.x > 1: great number of collisions, stochastic
regime, Gauss distribution

This theory assumes that £/7 > 1, that is it neglects the
fluctuations in the small energy losses, and considers
only those due to ¢ electrons.

For (/I < 1 there is no solution (MC simulations)
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Landau-type curves

The Landau curve is the limit distribution of the theory
for thin absorbers: it is an universal curve both for
heavy particles and electrons

The detectors give the Landau curve as a function of
the lost energy

The left tail is ~ 1.5 ¢

The right tail extends up to ~ 9 ¢ and it is due to the
) electron emission.

7 Figure 2.7 Measured pulse height distributions for 3-GeV/c protons
and 2-GeV/c electrons in a 90% Ar + 10% CH, gas mixture. (After A.

Walenta, J. Fischer, H. Okuno, and C. Wang, Nuc, Instr. Meth.
161: 45, 1979.)
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Energy and range straggling

Landau
E
N
) / =
Vavilov Bethe—Bloch
curve

Gauss

Bragg curve (Bragg peak)

- \

dx . .
single particle

\ parallel

\
" beam

distance of penetration

a0



0.30 Coulomb Multiple Scattering

: N\
x/2 ]/‘ 0
f

The charged particle traversing a medium experiences
the effect of the screened Coulomb field of the nuclei.
Since the elastic scattering cross section behaviour ~
1/sin*(#/2), at small angles the effect is so high that it
can be treated as a continuous process giving

small angle deflections per unit path.

The full treatment is given by the Moliere theory. An
empirical formula deduced from it gives the r.m.s. de-
flection angle with an accuracy ~ 10%:

13.6 MeV
By = " 2 \/z/Xo [L+0.038In(z/Xo)] rad  (13)

Bep
CAUTION: since this is an empirical formula with a log-
arithm, if one adds two thin media the resulting r.m.s.
angle is not /62, + 62,. The rule is to calculate before z
and X (in cm?/g, as the usual weighted sum) and after
to use the formula.
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Coulomb Multiple Scattering

X N\
ﬁe
i

The Moliere distribution, in the small angle approxima-

tion, in the plane can be approximated with a gaussian:

indexdistribution!Gauss

1 6>
03

] d6 (14)

In space the distribution with gaussian component is

given by the Rayleigh distribution:

02 + 62
0%

1
2 08 exp

dé, dé, (15)

where z and y are in the plane | to the direction of
motion. In the small angle approximation:

1 1 1
s=——=x0

— By, y=-—zb,
Y 30 =gl Wi
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Coulomb Multiple Scattering: electrons

Il passaggio delle radiazioni nella materia »

10t T T T T T

18,66 mg cm-* Au

10-1
37,28 mg _pm-' Au

10~ 1

10-4 -

10}
10-9 -
g"?: Z.‘.

! 1 L 1
[ s° 10° 15° 20° 25° 30°
©

10~ '

Figura 2.15. Distribuzione angolare di elettroni di 15.7 MeV diffusi da Au. Le curve continue
indicano la distribuzione prevista dalla teoria di Moliére della diffusione multipla a piccoli ¢ a
grandi angoli, con una estrapolazione nella regione di transizione: le curve tratteggiate. le
distribuzioni secondo la teoria gaussiana ¢ della diffusione singola. L'ordinata da il logaritmo
della frazione di fascio diffuso entro 9.696 x 10~* sr. [R. D. Birkhoff in (F1 E)).

Electrons and heavy particles have more or less the
same formula for the dF/dz and the multiple scattering.
However, the real behaviour, for energies around the
MeV, is completely different:

e the electron are very often relativistic and the en-
ergy loss has a large bremsstrahlung component;

e the energy loss for heavy particles is mainly due to
excitation/ionization (Bethe-Bloch);

e the electrons have large multiple scattering devia-
tions and their motion into a medium is “zigzagged”
(see the next photo)
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Coulomb Multiple Scattering: electrons

F igura 2.11. Elettroni lenti che presentano un cammino incurvato a causa della diffusione. Un
elettrone veloce procede in linea retta. [Foto originale di Wilson, 1923].
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0.31 Electromagnetic showers

Al DVn Al nes o AL I
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Electromagnetic (e.m.) showers

High energy radiates high energy photons and
lose energy exponentially in a radiation length X,. (see
page 44)

High energy photons generate high energy by

pair production. The mean distance is (7/9) Xj.

These two combined effects are the source of the
spectacular e.m. showers.

0 1 5 3

The two important quantities are:
the distance measured in radiation lengths: ¢t = z/X|,
the critical energy below which
(dE/dz)aq < (dE/dx)con (page 46)

26



Electromagnetic showers

The structure of an e.m. shower triggered by
a particle (electron or photon) with energy Fj
is:

e number of particles after ¢ radiation lengths
N(t) ~ 2!

e distance with shower energy FE;:
t(Fy) =In(Ey/E;)/In2

e distance with the maximum number of par-
ticles. This roughly is the shower depth,
because after this point the shower abruptly

stops.
B In E()/Ec

max —
In 2
We see that the shower depth increases
logarithmically with the primary energy.

e the mean number of particles (e*, e™, ~)
is Nnax = Ey/E. and is proportional to the
primary energy.

e.m. showers occur in “normal life” by cosmic
rays and artificially in the particle accelera-
tors.
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A 1 Gev v shower

< —Im——>
~v rays, charged particles

14 Copper slabs 1 cm thick, Xy = 1.43 cm,
E. =27 MeV, tp.x =95, Tmax = 7.45 cm, ~ 8 slabs
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A 1 Gev v shower
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2 m X 2 m calorimeter
~v rays, charged particles
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0.32 Cherenkov radiation

A particle with constant velocity does not radiate. How-
ever, the electrons of the medium feel a variable e.m.
field, they accelerate/decelerate and emit a small amount
of radiation. This effect is a negligible contribution to
the particle energy loss.

However, when the particle velocity exceeds the light
velocity in a medium of refractive index n

the coherent wavefront of the Cherenkov light can be
detected (think to a fast ship in water...)

Cherenkov cone

v<e/n v>c/n

0. c 1
cosfe = _— = n B
The number of v per unit path length and per energy
interval is
d’N B az?
dEdz hec

sin?6, ~ 3702 sin?6, eV~! cm™!
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A Cherenkov detector

Since
C 1

nv nf

a measurement of the Cherenkov angle per-
mits to measure the (§ of the particle when
B> 1/n.

Once ( is known, a measurement of the parti-
cle momentum (i.e. track curvature in a mag-
netic field) allows the determination of the par-
ticle mass

cosf, =

Scheme of a Cherenkov detector

particle

’
’
-
-
e s
- 2
2
-
-
-
-

radiating medium
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0.33 Nuclear Interactions

Differently from the e.m. interactions,

the nuclear interactions due to the short
range strong force give rise to discrete

processes.

The e.m. interactions are forward peaked.
Away from the forward direction, the
main effects are due to the strong (nu-
clear) interaction.

Remember the connection between event
rate and the cross section (page 18):

llis N
i collisions 1oy v — JISXPTA (16)
S

Cross sections are related to nuclear
radius. In a blob of constant density
one has (4/3)7r’ o< A, therefore;

r=roAY?  where 7y~ 1.25 107" cm
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Nuclear Interactions
The general behaviour of the cross section is
Ot = Oel T Oabs
From Quantum Mechanics, the scattering cross

section at low energy is 4 times the geometri-

cal cross section:
O =4mr? =4mri A2
The capture cross section at low energy has
the 1/v behaviour
r c

T E-RPA A VB

typical neutron cross section

resonance

1/\\/ /

5 c
or=4nmr"+ —

VE
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The 1/v behaviour

F is the number of collisions (absorptions)/cm?s:
F= / n(E)v(E)S(E) dE (17)

in the case of 1/v behaviour:
Y(E)v(E) = Xgvy = constant ,

where vy is a point chosen in the range of the 1/v be-
haviour. Conventionally the point is chosen at room
temperature (20° C):

vo = 2200 m/s corresponding toE = 0.0253 eV

From the previous equations one has:
F= 20’00 / n(E) dE = Zo’Ugn = 20¢0 (18)

and the collision rate is calculated as for a monoener-
getic beam at room temperature. Small deviations from
the 1/v behaviour are considered through an empirical
factor g:

F = g% ¢ (19)

Some values at vy = 2200 m/s:

symbol  Cd In U Pu
g 1.32 1.02 0.97 1.00
o, (barns) 2450. 193.5 7.6 1011.
¥, (em™!)  113.5 742 0.37  49.9
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0.34 Interaction matter-radiation: summary

Coulomb multiple scattering \

dE/dx (ionization) <—

proton , heavy
charged particles

=

__—> Energy straggling <——

—> Magnetic deflection —

§ Cherenkov (relativistic v>v, )/
dE/dx (bremsstrahlung)
e+ e- annihilation \
e+e— pair producti(&
Compton effect -
C.1.
Photoelectric effV

= 1/vcapture

. Flastic scattering <— . heavy particles

nuclear
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0.35 Example: 10 MeV protons

Consider a 0.01 cm (1004) thick Al absorber. Calculate
the energy loss, straggling and mean multiple scattering
deviation for 10 MeV protons.

Calculate the nuclear interaction probability when o =1

barn.
AL: Z=13, A=27, X; =8.9 cm, p=2.7 g/cm?

proton electron
I5; 0.1448 0.9988
ol 1.0106 20.57

F..x 0.0219 MeV 10. MeV
p 13735 MeV/c 10.49 MeV/c
£ 0.0952 MeV  0.002 MeV

10 MeV Protons

from page 40 dE/dz = 93.7 MeV/cm or dE/dz = 34.71
MeV cm?/g, hence the energy loss is

AFE =93.7x 0.01 =0.937 MeV.

From page 48 we have o = 0.045 and ¢/Emax = 4.34 and
the distribution is ~ gaussian.

AE =0.937 4+ 0.045 MeV

From page 51 one has (§) = 0.0170 radiants, (§) = 0.97°
Nuclear interaction probability:

N
P:aprzﬁ 10~
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0.36 Example: 10 MeV electrons

Consider a 0.01 cm (1004) thick Al absorber. Calculate
the energy loss, straggling and mean multiple scattering

deviation for 10 MeV electrons.
AL: Z=13, A=27, X, =8.9 cm, p= 2.7 g/cm?

proton electron
15 0.1448 0.9988
y 1.0106 20.57

FEhax  0.0219 MeV 10. MeV
p 13735 MeV/c 10.49 MeV/c
£ 00952 MeV 0002 MeV

10 MeV Electrons

from page 40 dE/dz = 4.78 MeV /cm or dFE/dzx = 1.77
MeV cm?/g, hence the collision energy loss is

AFE =478 x 0.01 =0.0478 MeV.

From page 43 dF/dz = 0.640 MeV /cm by bremsstrahlung
and AFE = 0.640 x 0.01 = 0.0064 MeV.

Total energy loss AFE = 0.0478 4+ 0.0064 = 0.0542 MeV.
From page 48 we have ¢ = 0.10 and {/Emax < 1 so that
the distribution is Landau-type (note the large fluctua-
tions):

AFE =0.054 +£0.100 MeV
From page 51 one has () = 0.0322 radiants, (§) = 1.85°
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0.37 Neutron interactions

Neutron sources from («, n) and (v, n) reactions:
Ra-Be, Po-Be

From accelerators or accelerating devices we
use:

"Ii+'H — "Be+n —1.647 MeV
SH4+?H — ‘He+n+17.6 MeV
H+>H — *He+n+3.27 MeV |

two-body reactions that give monoenergetic
neutrons in CM but not in the LAB system.
Neutron-nucleus (neutron-matter) reactions:

e elastic diffusion (moderation)
e inelastic reactions (moderation, activation)

e neutron absorption (n,7), (n,a) (absorption,
activation)

e fission (fuel)

Moderators: Al, C, H,O, D,O (inelastic thresh-
old are above 1 MeV or more)

Absorbers: Cd, Cs and many heavy nuclei,
where absorption prevails over elastic scatter-
ing moderation
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Diffusion in the LAB system

b b
E,p
@
RN
® T T
E, p target nucleu\

AP
E = E'+E, p=p+P , p>=2mE (20)
P/2 — p2+p/2—2pplcoseL
Va2 = VE+V? -2V costy, (21)
M
ME), = mE+mE —2mVEE'cosf,, —~A
m
AF, = E+E —2VEFE'cost,, E,=E—F
E 2
E = m[COSQL+\/A2—Sin29L] (22)
. {E’:E for 6, =0

E = (%)2 = aF for 01, = 0.«

For A > 1 0, = 7 (max energy loss)
For Hydrogen (A = 1) one has 0p,x = 7/2:
E 2 / — —
E =— [COSHL—I— V1 —sinZHL} = Fcosfr — E, E for 6, FO
4 E" =0 for QL =3
Conclusion: the neutron max energy loss factor «
(AE=E—-F =(1-a)F)

(A lid f A (23)
a= A1 is valid for any
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Diffusion in the CM system

Vi
fffffffffffffffffffffffff @
" neutron
" mass m=1
mass M=A
A LAB
Vi+ AV
v = 1A—|—1 2 ve=-vy, v1+Avs=0 —
1
—v=——-V vo=—"7"-—V
e R AN ar1!
1=v]+v.=v] — vy
Since cos(m — 8) = — cos 6, from Carnot theorem

12 A ? 1 ? 2 A
Vi© = A—I—1V1 + A—I—lvl +2‘/17(A+1)2COS(90M

E'=FE A%+ 1+ 2Acosfcm) (24)

(A+1)2 (
This is LAB energy as a function of 6cy. From (21),
after some calculations:

AcosOcy + 1

O = 25
COSTL VA2 + 14 2Acosbcym (25)
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LAB and CM system

The CM system is useful because

e from scattering theory we know the scattering an-
gular distributions. For example, in S-wave the dif-
fusion is isotropic.

e the elastic scattering distribution is monochromatic

Hence, many quantities are calculated in CM and then
transported in LAB, where we measure them.
In S-wave the scattering prob in CM is proportional to
the solid angle (see also (24))
dw —d(cosfom) — (A+1)*dE (26)
4 2 B 4A FE
hence, all the cos 6 intervals are equally probable (isotropy)
After one collision the energy of the outcoming neutron
in the LAB is equally probable within

aE < E' <E see (22) and (23)

For H, 0 < E' < E. The mean energy after one collision

is
aE+E_1

N — —
(E') = 5 5 (1+a)FE
and the average and fractional average energy losses are:
1 AFE 1
(AE):E—E’:i(l—a)E : %:5(1—04) (27)
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Slowing down and Lethargy

Nucleus A « &
Hydrogen 1 0 1.000
Water - - 0.920
Deuterium 2 0.111 0.725

Beryllium 9 0.640 0.209
Carbon 12 0.716 0.158
Iron 56 0.931 0.0357
Uranium 238 0.983 0.00838

A useful quantity to describe slowing down is the lethargy
u=In(Ey/FE) (28)

where F is the current energy after the collision and FEj
is usually the highest (incoming or initial) energy.
During slowing down, the lethargy increases.

The average lethargy ¢ in one collision is independent
of the incoming energy (as in (27))

From (24) at page 70 and from (26):

E Eq
(uy = €= In(Ey/E) —dE/ 47r/ —dE (29)
Ey

_ (A+1)2/E B 12 A-1
= “ian, ], WE/E)E = . 2A I

Since
(In(Ey/Ey)) =(InEy —InE;) = ¢
(In(E1/Ep)) =(InEy —InEy)) = £

by summing up, after n collisions the mean energy is
(InE,) =InEy—n¢ (30)
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Slowing down and Lethargy: examples

A useful formula for A > 1 (compare with the previous

table)
(A-1)2 A-1 2
=1 1 ~
e Y RV PR el W vz
e an 1 MeV neutron is scattered through a 45° angle
from a 2H nucleus. Find

(31)

- the energy of the scattered neutron:
From (22) E'=0.738 MeV

- the recoil energy: £y =FE—FE =1-0.738 = 0.262
MeV

- the change in lethargy:
Au = u' —u=In(Ey/E) — In(Ey/E)
= In(E/E") =1n(1/0.738) = 0.304

e Calculate the mean number of collisions necessary
to slow an 1 MeV neutron down to the thermal
energy for H, 2H, Water and C

From (30)
n = %m E/E,

Since ¥ =1 MeV and E, = 0.025 eV,
1 1
n= Eln(l 000000/0.025) = 517.5

Using the ¢ values for Hydrogen, Water, Deuterium
and Carbon from the table at page 72 (or from (31)
for D and C), we have

n(H)=175, n(H0)=19, n(D)=24, n(C)=110
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0.38 Neutron diffusion

Let consider a neutron gas in a target medium.
The number of interactions per second n, in a volume

V is F = dn,/dV (interactions/cm?s):

_dn,

F_dvz/ﬁwwﬂmmEmEZ/EQQQEwE(w)

where n(E) is the neutron density, v(F) their velocity
and ® (neutrons/s) is the total flux (called I in eq (2)
at page 18)

In this case the one-dimensional classical diffusion law

(Fick’s law) holds

dd
J=-D—
= (33)

where J is the neutron current density (neutron/ cm?
s) and D (cm) is the diffusion coefficient.
Outside neutron physics Fick’s law is often written as

dn
= —-D—
J i (34)

where n =(number of particles/cm?); in this case D
(cm?/s).

Fick’s law is a universal law (physics, chemistry, biol-
ogy, ..); it has a statistical origin, due to the difference
in the (neutron) concentration.

There is no dynamical content in this law.

The 3-dimensional form is

J=-DVd
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Continuity and diffusion equations

The continuity equation is simply the
neutron balance in the medium:

Rate of change = production rate - absorption rate - rate of leakage
of the number of inV inV inV
neutrons in V'

a—n:s—Za@—V-J
ot

From Fick’s law we obtain the
diffusion equation

‘Z—Z — DV?® —%,® + s (35)

In time independent problems (steady state

situations) we can set 2 =0

& D
VQd)—ﬁ:—%, L= (36)

where L is the diffusion length
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Solutions of the diffusion equations I
For an infinite monochromatic planar source
from (36) we have, at a distance z
’d @
W
The general solution is

b= Ae %L Bet/L

By discarding the solution increasing with =z
and using the boundary condition at the source
plane

dd DA
glﬁli%,] S/2 , and J Ddx 7

one obtains
_ 5L e

o
2D
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Solutions of the diffusion equations 11
For a point source we write eq (36) in spherical co-

ordinates: 1 d 1% )
2
—r— — — P =0
r2 drr dr L2

with general solution:
e—r/L er/L

d=A + B and put B =0 .
T r

The boundary source condition in this case is
S
limr?J(r) = —
I =4
and from the equations

d® 1 1 s
—_ — _— = —_— — _T/L —
J Dd’r DA(TL+r2)e — A

one obtains

S e—r/L

AxD 1
The neutrons absorbed per second n, from (32) are

¢ = ®=nv (37)

S e—r/L

24 S5 /L
dna:Zaq)(r)dV:ZallW—D . Amr dr—ﬁre L qr

By removing the source intensity s we obtain the ab-
sorption probability at r:

1
p(r)dr = 72" eI dr (38)

The mean square absorption radius is

<r2> = /erp('r) dr = 6 L2 (39)
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Diffusion of thermal neutrons I

For thermal neutrons the diffusion equation
® s D
2 2
v L? D’ by (40)
should be integrated on the thermal spectrum n(E) from
(1) of page 7 and on the velocity ’U(E) = +/2E /m:

o0 2kT
CDT = / n(kE ( ) dE =
i (E)v \/—
where n is the total number of thermal neutrons. Re-
member the thermal equivalences (see page 8)

1 _ T
ET:kT—imvT—8617 T107° eV = ﬁmeV

and the standard flux parameters at 2200 m/s:
v =2200 m/s , Ey=25.3meV, Ty =293.61°C
It is easy to show that:

® _Vmuw _ V7

O 2 wp 2 T
By defining the average quantities over the thermal
spectrum and using (19) of page 64 in the case of 1/v
absorption:

(B0 = 5 [ Su(B)2(E) B = o(T) 5u(Eo) @o/®r

(D) = /D

the thermal dlffusmn equation becomes

(DYV?® — (XY ®r = —s7, L7 = % (41)

where sy is the total flux of thermal neutrons.
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Diffusion of thermal neutrons I1

Exercise
Moderator Density (D) (%) L% Ly
g/cm®  cm cm™!  cm? cm
H>O 1.00 0.16 0.0197 8.1 2.85
D>O 1.10 0.87 29x107° 2.9x10* 170
Be 1.85 0.50 1.04 x 1073 480 21
Graphite 1.60 0.84 2.4 x10~* 3500 59

Table 1: Thermal neutron diffusion parameters for some moderators at 20
0C. Note the low absorption by the heavy water.

A point source emits 107 thermal neutrons/s in water
at room temperature. Calculate the flux at 15 cm from
the source and the root mean square absorption radius.
Calculate the same quantities also for the heavy water.
Solution
The flux from a point source is given by (37), with the
values averaged over the thermal spectrum:
S e—r/LT
Ar (D) r

From the table above, Ly = 2.85 cm and (D) = 0.16 cm.
With s = 107 and r = 15 cm we obtain:

107 e—15/2.85
47 x0.16 x 15
The root mean square absorption radius is from (39):

V(r?) =1/6L} = /6 x 8.1 =17.0 cm.

The same calculation for the heavy water gives
® = 5.57 x 10* neutrons/cm’s , +/(r?) = 416 cm

o =

O = 1.72 x 10> neutrons/cm’s
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0.39 Piles and reactors

Some important parameters

e 7: reactor cycle or generation time

dn  n(k—-1 /s
A () = et

e 0,: neutron absorption cross section (fission ex-

cluded)
e 0;: neutron fission cross section
® 0, =0, +0y: total absorption cross section
® o,/o: ratio a
e u: average neutrons per fission (~ 2.5 in U)
e 1: average neutrons per absorption vos/o,
e f: neutron fraction absorbed by the fuel

® [: neutron chain moltiplication factor

keg: effective moltiplication factor (see next)

e c: (neutrons per fission)/(neutrons per thermal fis-
sion) (~ 1.04)

e p: probability of a neutron capture followed by
fission

The four factor formula holds:

k=mnfep (42)
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Nuclear reactor balance

The effective four factor formula has also a factor P =
P¢P.P, including the fast neutron (1 — FPf), resonance
neutron (1 — P,) and thermal neutrons (1 — P,) escapes

from the reactor
keff =TnNep f P

ket > 1 for a critical assembly (reactor)

Some values for a critical pile:

e=1.038 p=0.905, f=0.888 n=1308—k=mnepf=1.081

1 thermal neutron
absorbed in uranium

J

7N neutrons produced by U235 fission

|

\ Ne neutrons from all the fissions
\

formation of U isotopes

ne(1-Pr)
fast neutrons escape

/

ne Pf neutrons enter the U235

resonances
l

epP ¢P.. thermal neutrons are
NEPE 5 produced
!

resonance neutron escape or
neutron capture without fission

nepPg Pr Pt neutron are absorbed
\

some thermal
neutrons escape

|

absorbed by the moderator

mepf P neutrons absorbed in uranium
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Triga Mark Reactor
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0.40 The Monte Carlo method

e It originates at Los Alamos by an
idea of J. von Neumann and S.Ulam,
to treat scattering and absorption of
neutron in fissile materials.

e from the 50-ies there is a big diffu-
sion of the method, thanks to com-
puters

e presently it is one of the more im-
portant methods of nuclear physics

e the method is based on two funda-
mental ideas: the cumulative vari-
able theorem, and the Central Limit
theorem. Based on this, only an
uniform random number generator
is necessary
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0.41 The sampling technique

Theorem 1:
Ifa<X<b,e X~U(a,b)

1 T2 —
P{wnggxg}—b_a/ doe =277 ()

If (1) is valid, then X ~ Uf(a,b)

Theorem 2:

If X has a continuous density p(x) the cumu-
lative random variable

C(X) = / C @) da

is uniform in [0, 1], that is C' ~ U(0,1).

|

Example: simulate a nuclear event when
0. = 2 barn and o,,; = 3 barn.
If RANDOM < 0.4 there is scattering, otherwise
absorption occurs.

| scattering | absorption |
0 0.4 1

Figure 1: Simulation of the scattering-absorption mechanism with the routine
rndm.
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The sampling technique

Exercise: generate nuclear events at the point

p(x)

Figure 2: The cumulative variable theorem.

x by knowing the cross section o, or > = o N.
From page 19:

X
F(z) = / Y e "% =1—e ~% = RANDOM
0
by inversion:
1
z = —= In(1 — RANDOM)

or: .
T=—5 In(RANDONM) (43)

General rule: the number of mean free paths
>z is a random variable — In(RANDOM)
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0.42 Rejection method

{ z; = a+&(b—a)
yi = &§h

with 0 < &,& < 1.

Accept z; if y; < p(z;)

a .
X

Figure 3: The rejection technique.
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0.43 Sampling examples

Uniform sampling into a circle:

pR*dp/2  dyp
omrR2  2m

p(p) dp =

For ¢(r) we have

p2nrdr  2r
= = —dr .
prR?  R?

The corresponding cumulatives are:

&= Ply) = / o) dp = F

q(r)dr

:%,
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Sampling examples

Isotropy
xr = Rsenvcosyp
y = Rsentvseny
z = Rcos? .

dQ2 = send¥dddy .

If niy,; is the number of points:

Mot _ dn 1sotro
ir dQ by
We have:
d ds? vddd
p(Q)dQ: n_ _sen ©

Nt 4T 4

1 i 1
p(p)dp = Edgo/o Senﬁdﬁ:%dgo,

1 2w
q(¥)dv = —sem?dﬁ/ dp =
0

4

sen U

dd .

The corresponding cumulatives are:

©
:P = —
1 — cos??

2

p = 2m&
¥ = acos(l —2&) .
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Detector efficiency

detector

R window

h
h
Y2
R
radioactive plane
(x,¥) a
X1 Xzyl

¢is 0 < RANDOM < 1

x:x1+£(fc2—$1), y:y1+§(y2—y1)
cosfh=1-2¢6, o¢=2w¢

a=htgd, r=+/22+9y*, R= \/7“2—|—a2—27“acosgb

if R is less then the detector radius R; the par-
ticle is counted. Efficiency:

~ particles with R < Rq

€ .
generated particles

89



0.44 Neutron diffusion: MC method

Neutron diffusion from a point source into a
12C sphere

cammino percorso
dal neutrone

urto elastico

distanza di volo

assorbimento

e Interaction: constant cross sections
ET — Ea + Z]el

e Kinematics: the source emits isotropically
in the LAB:
¢=2m& , cosf=1-2&

c.m. director cosines:

a = sinf cos ¢
8 = sinf coso
v = cosb
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Neutron diffusion: MC method II
e Sampling of the interaction point:
probability density:
p(z)dz = Xp exp(—zXr)dz
from the general rule (43) of page 85 dis-

tance between two successive interactions:

1

e Type of interaction:
0<& <X,/%p  absorption
Yo/Yr <& <1 elastic scattering ;
e New flight direction (if elastic scattering):

In S wave the neutron scattering is isotropic
in the c.m. frame:

coslupn =1—2cos&s , Gy =21

Some formulae (see (25) at page 70) are
used to transform into the LAB system:
1+ Acosb,.,

VA2 +2Ac080, + 1
¢ = Qem
where A (= 12 in this case) is the atomic
weight.

cos =
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Neutron diffusion: MC method III

The new director cosines o/, ', 7' can be found
with the formula
(see http:/ /www.springer.it/libri_libro.asp?id=314):
o = pa+a(aysing + B cos @)
B = B+ a(fysing — acos o)
Y = py—a(l —5°)siné

L hmest Rl A1
With |y| = 1:

o =yy/1—plcosp, B'=+/1—p’sing, o' =~pu
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Neutron diffusion: MC method IV

With the distance d and the current director cosines we
can update the neutron coordinates

e Distance: d; = d+ d;_; where d is from (44)

e Coordinates: at the end these gives path and dis-
tance

Ti=xi1+dia, yi=yi1+diB, z=z_1+dy
e Time of flight: (at £ =0.025 eV v = 2200 m/s);
ti=ti1+d; /v

e Number of collisions: simply by counting the inter-
action points until the neutron is absorbed.

51000 (a)  m=3697 |5
& s =3654 | &
£ =
E] E
b4 Z
500~
0 L 0 L L
0 10000 20000 0 0.02 0.04 0.06 0.08
Dist. percorsa (cm) Tempo diff. (sec.)
=1000F =
5 (©  m=1425 5l nd m=114
3 s =1408 | 3 s =80
£ =
E E
2 Z.400
500~
200
0 ‘ 0 ‘
0 2500 5000 0 200 400
Numero urti Dist. di volo (cm)
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Neutron diffusion: MC method V

51000- (a)  m=367 § (b)  m=0.0167
% s =3654 | 7501 s =0.0165
= =
S S
z zZ
500+
500
250+
0 | 0 | |
0 10000 20000 0 0.02 0.04 0.06 0.08
Dist. percorsa (cm) Tempo diff. (sec.)
-=1000F~ =
5 (©  m=1425 5g0 (@  m=114
% s =1408 | 3 s =80
£ £
= =
z Z.400
500
200
0 : 0 :
0 2500 5000 0 200 400
Numero urti Dist. di volo (cm)

Interpretation of the MC results

e Total zig-zag distance (a)
this is the exponential distribution

p(z) = Bye "
e Diffusion time (b)

Same as in (a) with a change of variable, because v
is kept constant:

p(t) = v ¥ e
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Neutron diffusion: MC method V

51000- (@)  m=-3697 |5 (b)  m=0.0167

2 s =3654 | 3 s =0.0165

= =

E] C]

Z Z

500
0 L 0 L L
0 10000 20000 0 0.02 0.04 0.06 0.08

Dist. percorsa (cm) Tempo diff. (sec.)

=1000F =

5 ©  m=125 |50 pn( @ m=114

) s =1408 | & s =80

= =

E] C]

z Z.400

500~
200
0 ‘ 0 :
0 2500 5000 0 200 400

Numero urti Dist. di volo (cm)

e Number of collisions (c)
This distribution is not poissonian, because the events
are correlated, but geometrical, which is exponen-
tial for a high number of collisions.

e Source-absorption straight distance (d)
This is a solution of the diffusion equation (38) of
page 77 (see the fit in fig.(d)):

p(r)dr = % e "L dr

95



Neutron Scilab code

//

// codice SCILAB Neutroni: calcolo delle distribuzioni

// caratteristiche della diffusione di neutroni in un mezzo

//

// Le quantita’ di input sono descritte interattivamente

// Se la sezione d’urto di assorbimento e’ piccola come nel caso del
// Carbonio, il programma puo’ durare molti secondi per evento

//

// Autore: A. Rotondi 13 aprile 2004

//

/] ——=——mmm

// routine richieste
exec (macroscil+’Histplote.sci’);
exec (macroscil+’Histfreqe.sci’);

pig= 3.14159265;
// Calcolo dei coseni direttori delle direzioni di volo

function  x=Coseni(mass, cd);
fi = 2.*pig*grand(1,1,’def’);
sfi = sin(fi);
cfi = cos(fi);
coscm = 1. - 2.%grand(1,1,’def’);
coslab = (1.+mass*coscm)/sqrt(mass*mass+2.*mass*coscm+1.);
mu = sqrt(1l.-coslab*coslab);
if(abs(cd(3))==1.) then
x(1)=muxcfi; x(2)=mu*sfi; x(3)=cd(3)*coslab;
else
ck = mu/sqrt(1.-cd(3)*cd(3));

x(1) = coslab*cd(1) + ck*(cd(1)*cd(3)*sfi + cd(2)*cfi);
x(2) = coslab*cd(2) + ck*(cd(2)*cd(3)*sfi - cd(1)*cfi);
x(3) = coslab*cd(3) - ck*x(1.-cd(3)*cd(3))*sfi;
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end;
endfunction;

// Codice principale

// quantita’ di input
amass = input("massa del nucleo (unita atomiche)..

//

//

(es

empio: digitare 12 per il Carbonio).");

sigel = input("sigma macroscopica elastica (1/cm) (es.: 0.3851");

sigas = input("sigma macroscopica assorbimento (1/cm) (es.:
vel = input("velocita (m/s) (es.: 2200)");

vel = vel*100; // velocita’ in cm al secondo

Nevt = input("numero eventi (es.: 10000");

sigtot = sigel + sigas;

sigper = sigel/sigtot;
azzeramento vettori da istogrammare
Disper = zeros(1,Nevt);
Timvol = zeros(1,Nevt);
Nurti = zeros(1,Nevt);
Disvol = zeros(1,Nevt);
X = zeros(1,3);
pstep = zeros(1,3);
cd = zeros(1,3);
ciclo di generazione dei mneutroni
for k=1:Nevt,
Disper(k)=0;
Nurti(k)=0;

for i=1:3, pstep(i)=0; end;
fi = 2.*pig*grand(1,1,’def’);
cd(3) = 1.-2.%grand(1,1,’def’);

cd(1) = sqrt(1l.-cd(3)*cd(3))*cos(fi);
cd(2) = sqrt(1l.-cd(3)*cd(3))*sin(fi);
iflg=0;
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while (iflg==0),
camm = -log(grand(1,1,’def’))/sigtot;
for j=1:3, pstep(j)=pstep(j)+camm*cd(j); end;
Disper(k)=Disper (k)+camm;
Timvol(k)=1000.*Disper(k)/vel; // millisecondi
Nurti(k)=Nurti(k)+1;
if(grand(1,1,’def’) > sigper) then,
Disvol(k)=sqrt(pstep(1l) "2+pstep(2) "2+pstep(3) ~2);
iflg=1;
else
x=Coseni (amass,cd) ;
cd(1)=x(1); cd(2)=x(2); cd(3)=x(3);
end;
end;
// stampa intermedia del numero di eventi
if (modulo(k,10) ==0) then,
write(%io(2)," numero di neutroni: "+string(k));
end;
end;

display dei risultati alla fine

xbasc() ;

subplot(2,2,1)

Histplote(30,Disper,errors=1,stat=1); xtitle(’distanza zig-zag (cm)’);
subplot(2,2,2)

Histplote(30,Timvol,errors=1,stat=1); xtitle(’tempo (ms)’);
subplot(2,2,3)

sp= [min(Nurti) :max(Nurti)];

[ind Occl=dsearch(Nurti,sp,’d’); // Occ=frequenze per spettro DISCRETO
Histfreqe(Occ,sp,errors=1,stat=1); xtitle(’numero urti’);
subplot(2,2,4)

Histplote(50,Disvol,errors=1,stat=1); xtitle(’distanza di volo (cm)’);
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