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The tracking

To reconstruct the particle path to find the origin (vertex)
and the momentum
The trajectory is usually curved by the Lorentz force
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Even when B is uniform, the trajectory is
NOT an helix, due to

- energy loss

* multiple scattering

The track is defined as a set of points usually on detector

planes (real and/or virtual) ,



The track

the five track coordinates: l/p, v, W' v,w
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Figure 1: The five track parameters

Since on a detector plane we have two coordinates (v,w) and
three momentum components (p,, p,. p,,) the track

is a B-dimensional mathematical entity °



Fitting method Helix | Spline | Kalman

Magnetic field dishomogeneity || NO | YES YES
Material effect NO NO YES

Tracking neglecting

inhomogeneous magnetic field fllét]c:‘)l(ﬁt
and the medium effects
Tracking in Global fit
inhomogeneous magnetic field SPLINES
neglecting the medium effects H. Wind, NIM 115(1974)431
Tracking in Progressive fit
inhomogeneous magnetic field with KALMAN ...

energy loss and multiple scattering

R. Frithwirth, NIM A262(1987¥444



The Helix
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spl ine fi"' H. Wind, NIM 115 (1974), 431

No medium effects, dishomogeneous magnetic field is taken intoaccount
» The spline is a smooth segmented polynomial

* Cubic spline through n+1 points y,, ..., y;

Y, >:a+bt+ct*+dt?

parameters

*The parameters are found by constraining the pieces of splines to be
connected in the measured points assuring the continuity up to the 2
derivative



What is the track follower?

Also MC with fluctuations
Switched of f

Track /

extrapolation

From one point
Track follower To

Another one

Error
Propagation
(5x5 covariance In the same point
Matrix) Between two

Track systems



Tracking ~ cokisemims G, o // g
vs MC simulation

(many particles)
« \‘ MC= at each step the
‘ ' trajectory is sampled
<]

as a random value

Tracking= at' each step the
frajectory Is

D
tracker

as a value with

(one particle) - .
an associarte

Energy loss affects both tracking (averages)
and error propagation (covariance matrix), mul-
tiple scattering affects the error propagation 8

only.



GEANE

V. Innocente et al. Average Tracking and Error Propagation Package, CERN Program Library W5013-E (1991).
Two main tasks:

. MARS > SC
* Track propagation: the same MC

geometry banks are used. x,) (coshcosp cosksing sink ) x
* Error propagation: y, |=| —sino CoSp 0 |y
from one point to another one 2| |=simcosp —sinising cos\ ) z
In the same point between
different systems | sc sp

GEANE = tracking
with the geometry
of GEANT3 + a lot
of mathematics
for the transport
matrix calculation




Track propagation
‘ Tracking:

ejlki] = G[ki] |

G is the software part that calculates the trajectory

taking into account magnetic field and energy loss.
‘ Error propagation:

If o[k;| is the covariance matrix on the prediction k;,

the error on the extrapolated point e; is given by the

standard error propagation:

G’[Ej‘] = T;JU[RI]TE; + W;l JI;J[IEQ-. JE]_} —_
T;; is the transport (derivative or gradient) matrix

W;; contains the errors (fluctuations) due to multiple

scafitering and energy loss. The calculation of this ma-
terribly complicated, so that usually people search

for”already existing and reliable products. 0



Track propagation IT

f 1

! —\ a piece of helix
@zi field along z-axis
N pt-:- \ ! . M(s) is the position

X | cosi
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Track propagation Il

Now the tracking can be performed, with the unique assumption for the field to
be constant within one step, so that for an arbitrary magnetic field the track can
he written as a series of helix pieces (one for each step). To perform the tracking
let’ s define an orthogonal right-handed triplet of axes (n;, b;. h;):

-

h — H; M,y = M;+p[(1—cos®;) n;+sin6; - b; +6;tan A; - h;]

' H; :

T b T.., = cos\lsin®; n +cosO, b, +tan )\, - h|

R L P
i ‘Tt X hz‘ T = ;

— , , - H«T
bz hz X 1 \ N = H = T

R = T=N

The matrix to change from (ng, b, k) to (N, R, T;) is

N —1 [ 0 n
I = 0 —sin A cos A b
T 0 cos A sim A h

The helix can then be parametrized as follows ([7] and [9]):

5’;"{' T + %{1 _ cosé) - Ng

= w

M = M, + %{& _sind)-H +



Track propaga‘non IV

/i Strandlie & Wittek, CMS note, 2006/001

original track

" )
\\‘\\ v / -r_,.-‘
\\\ / ;/’f
displaced track ,/ /
/ M = Mo+ L (0—sing)- H+ 220 10 4 21 _cosg)
e : = Vlp — 8 — 0 — 0= N
(.2 Q 2
| T = i Yil—rcosfl)-H+cosél- Ty +asint - Ny.
8

with M being the position vector of the poimt on the helix at path length s from the reference point M (at ¢ = 0),
H = B/ |B| beng a normalized magnetic field vector, T = p/ |p| being a normalized tangent vector to the track.

=HxT)/awitha=HxT,y=H-T,( =—|B|g/pwthp = |p| being the absolute value of the
J-momentum vector, ¢ = +1 denoting the charge of the particle. and # = () - s. The numerical value of |B| 15
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The first task: track propagation
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The jacobian transports the erros

from one step to another

Here, at each step,
multiple scattering and
energy loss effects
have to be added

15



On the quantitative modelling of core and tails of multiple

scattering by Gaussian mixtures

R. Fruhwirth®*, M. Regler

Institwt fiir Hochenergiephysik der Orterreichischen Akademie der Wissenschaften, Nikolsdorfer Gasse I8, A-I030 Wien, Austria

Recerved 25 Apnl 2000; accepted 30 May 2000
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There is no simple closed form for the cumulative
distribution function of the projected scattering
angle. For the simulation one therefore has to go
back to the scattering angle ¢ in space, which can be
generated by inverting its cumulative distribution
function:

| —u
0 = ab
N \/ Wb + @ (26)

where u is a stochastic variable with a uniform
distribution in the interval [0,1]. If ¢ is uniform in

Multiple
scattering

d "2Ze*\ 2 (1 -
5= ) —> SO =Gy ot

(0)

16



I I |

Multiple scattering

] . 1 ] L

B pf G(Bp]

Fig. 3. The density of the projected multiple scattering angle in
carbon, in standard measure, for N =2'Y (top) and N = 22"
(bottom). The dots are the frequencies of a simulated sample
obtained by summing over single scatters. The dotted line is the
density of a standard Gaussian. 17



Multiple scattering

Moliere's final solution fy (€)@ d of the transport
equation is given in space, using the transformation

£(0)d0 = fi,(0) d(cos 0) dg/ 2 (49)

and the approximation |d(cos )] = sinf df =~ 0d6.
In his solution the function f,,(f) is approximated
by

(50)

o - U o FAR AT AR S
.fx-rw]wz—[}%r[f (0) + B + Bz]

where 0, is the characteristic multiple scattering

angle of the target, (' = E}_,.-"(x_.e""'zih_,) is the reduced
angle, and B is related to the logarithm of the
effective number of collisions in the target. The
functions f'® are given by

. . ] : , 2 .5'1 .3'1 5
.fmw}:”—r[ yJo(@y)e 4(%“1%) dy  (51)
"0
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d/X=1.21

— Convolution

| ~—— Moliere density

Lot

0.05
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Energy loss

The fluctuations in ionization for one particle of charge z, mass m, velocity
3, are characterized by the parameter g,

K= _Ef.ax ) (60)

which is proportional to the ratio of mean energy loss to the maximum al-
lowed energy transfer E,,., in a single collision with an atomic electron:
21 3°7°

Enax = 7 61
1+ 2yme/m + (m,/m)? (61)

where v = 1/4/1 — 32 = E/m and m, is the electron mass. The parameter
£ comes from the Rutherford scattering cross section and is defined as [11]:
2

2/
£ =153.4 7A pd (keV) | (62)

where p, d, Z and A are the density (gﬁtma}, thickness, atomic and mass
number of the medium.



Average energy loss

2,.,2n2
() ——amnmz 2Ly 2T g 8| [BETHE BLOCH
X

Fluctuations in energy loss

K — S _ awerage energy loss
E. ... maxenergy lossina singlecollision
. 2
k>10 Gaussian . €:= £ Emax(l_Bj N 62(1) =
0.01<k <10 Vavilov 2 p
k<001; N, >50 Landau u, o are infinite |l

k<001; N, <50 Sub-Landau © is too largel!



Gauss and Vavilov: no problems for the track follower

- Gze::& Emax(l_ﬁz)jcz(ljjclzl
2 p

GEANE
Landau: problematic distribution

The track follower must be compare
With the full Landau sampling

5 ray tail

00

Sub-Landau: what distribution?

23



Gauss and Vavilov: no problems for the track follower

"TE{E;I — _{1 T Jfg.‘fzj — J;_Emax{l _ 'iz.'"l‘z:] . {63]

GEANE and GEANT4E contain only this

24



Improvements

* New error calculation in energy loss for
heavy particles

* New error calculation for bremsstrahlung

25



Truncated Landau:

Amax ¥ Mean T
11.1 0.90 1.61  2.83
224 0.95 240 4.23
110.0  0.99 4.19 10.16
200.0 0,995 4.82 13.88
256.0 0.996 5.08 15.76
339.0 0997 537 18.19
507.0 0.998 578 22.33
1007.0 0.999  6.48 31.59

l}‘IZII:I.HJC

Table 1: Result of the integration a = [ ™ f(A)dA of the Landau distri-
bution from Ay, = —3.5 to Aya. of the table. The mean and the standard
deviation of the truncated distribution are also shown. For this distribu-
tion. the full mean and the variance are infinite, only the cumulative can be

ralenlated

Solution (GEANT3 & GEANT4): truncation of the distribution tail
to have as a mean the average dE/dx

(0.67794 + 0.052382 (\)) exp(0.94753 + 0.74442 (\)) e



. GEANE for PANDA modified
Original GEANE with the the a-tail

hi [iF ] hi
0 = Enties 1000 - Entres 1000
[ I Mean L4505 100f= Mean 0513
C RMS 0 i RMS 1581
4 L
- Hll_
= -
sif=
200 ul-
100l i
Lo bbb e bbb e b L b 1 Lol bl
L T - p— 7 T 4 &5 8§ 1

Figure 10: Pull distribution A(1/p)/o for 1 GeV muons after passing through
the PANDA straw tube detector. Left: Standard GEANE result (RMS= 0.3
in the displayed window); right: result after the modification with @ = 0.995
(see the text). The region between the vertical lines has RMS= 1.03.
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Thin gaseous absorbers: The Urban distribution

- excitation macroscopic cross sections 2, and s:

fi In(2m3%+%/e;) —
E, n(2mB*2/T) —

Y. =C

U—TL i=1,2

0ifZ <2 B
212 {7 > 2 - fr=1-J

I=162"° (eV), fo= {

J oy Uh E
es = 1022 (V) | e1=( ) | = =

—_ =04 O = :

Egﬁ Ax

and Eyeq = (dE/dx)- Az is the energy lost in the absorber of thickness
A

- lonization macroscopic cross section Yj:

'F'[I'IH.}L

= C 1 B = DB = /1) |

- number of total collisions N,:

Ne=(Z1 4+ Xa + Y3)Azr = Ny + Na+ N3 . (8)



E = (X161 + Xoea + X3 E3)Axr = Nyey + Naea + N3Ejy | (9)

where e, and es are the two fixed excitation energies of the model
and Fj is the energy lost by d-electron emission. This is a stochastic
quantity that follows approximately the distribution [?]:

: I(E I 1
-ray tail | By ~ g(E) where g(E) = Bmax 1) 1 [ < E < Eyax+1. (10)

2
Enax  E

In GEANT3 and GEANT4 the energy F is obtained by eq. (9) by sampling
Ny, Ny and N5 from the Poisson distribution and F5 from g(F).
Therefore, the sampling of the excitation energy is

E. = Niey + Naes (11)

with F| and F5 are consant and N, N, are sample from the Poisson distri-
bution, whereas the delta ray ionization energy is sampled as:

(12)

30



Truncation of the Urban tail of distribution

-'rliEtlm.x + lr} (e i dF — {EI'EJHH + Ij Eﬂ - I - o
EI‘I’IELZ!{ /I E* ’ Emm En
!
—+ E, =
“ 1 — k Ema_:q'f{Enmx + ‘r]
The mean and variance of the truncated distribution are:
IE Iy [Fe IE [ E
{E:g} — { max‘|‘ J‘/ i{"E= { m.!u._" }]H(—ﬂ),
Ema:r. T E EI'IIE'L‘-’.
[(Epax + 1) [ I(Epax + 1) .
EE — max / '[:]E — e E . _r )
< j‘} Ema:r. I Emax [I “ } .
02(E3) = < Ej>— < E3>" . (13)

Then, the error propagation applied to eq. (9), where a random sum is
present, where Ny, No, N3 and E3 are random variables, gives:

A(E) = (N1 & + (No) € + (Ns) (Bs)? + 0*[B] () (14)
31



Is the Urban distribution
a good model?

Comparison with an “"exact” model
in the case of a thin gas layer

32



SECONDARY AND TOTAL IONIZATION MIP particle:

CLUSTERS AND DELTA ELECTRONS: Ar‘gon
c0O2

K Cluster/cm 26 35

(n) | (nX) e—nX . N | . o / - -
piN)= Tl Effective cluster/cm: nyrp dE/dx/ (dE/dX),,i,

k- N: total ion-electron pairs N/n ~ 2.8
\ CLUSTER SIZE DISTRIBUTION:
" P(m) HQ_
\L'lh-l [ = CO2 Ji P{m) ~ —

w
Tl m:.;IL‘; ) J mz
- v i
_ \_\ . /
b

e - J\T{{ ;
i * T ]
15 3 !.: :ﬂ E
r e ]
L H. Fischle et al,

—_ - ;* e Nuel. Instr. and Meth.
I (X) =NE L K A301(1991)202
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Urban model works well

Lost energy hu Urban Meocdel hu
Erirkea S0 Entrkza S0EI)
= Maan 2065 Wigan 2065
Eum- Urban RE3 1F3 Esuﬂ-_ RES 1473
L Exact model
4000 f Landau i
3000 1500
2000 1000
1000 500
A [
0 %

Figure 2: Urban and simulated distribution

1.5 cm of Ar/CO2 90/10 1.2 GeV pions 34



In summary, our method calculates the 1/p variance of eq. (5) with a
variance o(E) due to the ionization energy loss calculated as follows:

a) for big and moderate absorbers when x > 0.01, the variance o?(F) is
given by eq. (4) (old GEANE method);

b) for thin absorbers, & < 0.01, when the number of collisions from eq. (10)
is N, > 50, o?(E) is given by eq. (9):

¢) for very thin absorbers, when k < 0.01 and N, < 50, the variance
o’(E) is given by eq. (17).

The matching between Urban and Landau
is obtained for 6=0.9999

35
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RMS 1/p pull

th
= 1.
[T A
L HH
N _._,.l-r"'
i ’_/_./'
08— rI,_,r-'
R /
- r_.II.'
i_'Lﬁ_— |
=1 II
[
]
0.4—:
:J.
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1:L“rl}ztt55111}12141515]21:!

Plana

Figure 4: Values of the standard deviations of the 1/p pull variable with truncation param-
eter § = 0.9999 from eq. (15), as a function of the number of the traversed layers. The data
refer to 1 Gev pions traversing layers formed by a 1 mm thick Al (Landau distribution)
and a 1 em thick Ar gas (Urban distribution) absorbers at NTP,
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Bremsstrahlung

The radiative energy loss straggling distribution for the energy E of a
particle of incident energy Ej on an absorber of thickness x, was first deduced
by Heitler [28], using an approximate expression for the bremsstrahlung cross

section:
T

1 B\ !
IE) = 5r (IHE) = xme (18)

where Xj is the radiation length of the absorber and I' is the gamma function.

1 1
(E) = ED§: (E%:Eﬁ;

B = (B) - (B =B (3-71)
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Bremsstrahlung

absorber energy Heitler equation GEANT3 GEANT4
(GeV) T o T o 1 o
10 em Ar 0.5 0.4995 0.0097 0.4995 0.0097 0.4995 0.0105
10 ecm Ar 1.0 0.9991 0.0194 0.9991 0.0198 0.9991 0.0203
lem Al 0.5 0.447  0.098 0.444  0.100 0.444  0.098
lem Al 1.0 0.894  0.195 0.891 0.203 0.891  0.201
lem Al 10 9.01 1.95 8.96 2.04 8.95 2.06

Table 2: comparison between the mean energy g and standard deviation o (MeV) from
the the GEANT3 and GEANT4 simulated distributions relative to 10° electrons and from
the Heitler formula after passing some absorbers.
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Bremsstrahlung

Total 1/p pull distribution _ hs
o e o
o(1/E] = 05[1/E5,1/E],  where I
E, = Min(Ey, (E) +o[E]) e
o = [ (E)=0lE] if By=(E)+o[E] i
L Ey - 20[E] if Ey = Ey | ng_
10.5—
‘Lu.u.ll.u.J..uL.ﬂm
20 -15

-30 -25 - -10 -5 0 5
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Figure 11: Pull distributions of the 5 track parameters in the case of 2 GeV
muons that have passed through the whole detector, just before the PANDA



A Bayesian technique:The KALMAN filter

3
Consider the well-known weighted mean:
X %
(X —)? (K —p)? Ox*(u) of O}
)= =0 u=a—
O O3 H n
of O3
A simple algebraic manipulation gives the recursive form:
X X
12+ 22 2 __2 2 2
_ 0, 0, 0,0, [ X X |_ X0, +X0, =
H= 1 "2, 2| 2t 2|77 2.2 X 2 TR
N o, +o,\ o, O, o, +0,
012 (75 / /

Kalman= the measurement is weighted o
with a model prediction (track following) prediction



Example: Radar Applications

FAN BEAM

N

ESTIMATED RANGE, AZIMUTH
DOPPLER 3¢ ELLIPSOID

STIMATED POSITION NEXT SCAN
,MANEUVER BOX

REFLECTOR
ANTENNA

AST ESTIMATED
POSITION

AZIMUTH ANGLE K«.

In a radar application, where one is interested in following a target, information about the location,
speed, and acceleration of the target is measured at different moments in tfime with corruption by
hoise.

State vector error of x Covariance matrix
r ~N

o2,
2
Sy
GZ
— 4
r‘—{xIYIZIvXIVYIVZ} C: < GZ >
\ J\ J VX
Y Y o2
vy
2
iti velocit O vz
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T tto Pight somrmat

December 21, 1968. The Apollo 8 spacecraft has just been sent on its way to the Moon.
003:46:31 Collins: Roger. At your convenience, would you please go POO and Accept? We're going to update to your(W-matrix,
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The original idea is very simple

When m is measured at t, and x(t;,t,) is the prediction from t; to 1,
the best evaluation of x at t, is

This is called the Kalman filter recursive form

2
O, ~
C.,tO0,

Kalman= the measurement is weighted

with a model prediction (track following) »



Extrapolation, filtering
and smoothing
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Detector plane
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Track propagation: physical effects

Multiple scattering

Energy loss straggling
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Tracking
with Kalman

MEasLUFR

true
trajectory

X measured point

_ _ ) detector
[ true point (final)

e(l) extrapolated by the tracker

The best estimate of the track is given by minimizing
w.r.t the f variables:

Xg(f) = Zﬁ_:[(ei[ﬁ—l]_fi)wi—l(Ef[fi—l]_fé)]—'_(i:i_fi)vi(i:i_ft)
(1)

Note the W matrix associated to e; because the extrap-

47
olation start from the true point.



Tracking
with Kalman

The minimization gives:
Oy* | ,
8)](“.- = Wiaieilfial = f)+Vi(zi—fi)) (2
+T; 41 Wiivi(ei[fi]l = fir1) =0

where the last (exira) term comes from the

extrapolation procedure (tracker).
The best way to solve
eq (2) is the Kalman algorithm
(Kalman, 1961). It is based on three
steps:
V. Innocente and E. Nagy, NIM A324(1993)297

(see their sect. 4.3. Correct their eq. below the (34)

one with our eq.(9)). *



o EXTRAPOLATION: calculation of

e; and W. Deterministic step made
by the tracker.

Square brackets mean function argument

e; = EXTRAP. extrapolation

k; = result of the Kalman filter

T, = EXTRAP. transport matrix

o(k)? = Kalman error matrix

o’[e;] = EXTRAP. error matrix

W, 1, = EXTRAP. energy loss and multiple

scattering weight matrix

— L] L] L] 49
W ! ;= covariance matrix inverse of W



e FILTERING: minimizes the first two
terms of eq. (2). It is simply the
weighted mean;

—cr[k]( [E!]Et—l—vuﬂ)

_E[Eg] + V;
r; = measured points % %
k; = Kalman average value _0f O3
o(k)? = Kalman error matrix S 1
o’(e) = EXTRAP. error matrix of 0%
V = original weight matrix of the measured

points

1
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e SMOOTHING: necessary to mini-
mize a y° in the presence of the ex-
trapolation term (last term in eq.

(2)).

ki + A; (fir1 — €iv1)

o’[k] + A; (ﬂ'z[fi.—l-l] — 0 E[EH—ID

= o’k Ty 0 [€ir]

f; = final average value
o(k)? = Kalman error matrix

o’(e) = EXTRAP. error matrix
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Track fitting tools

1. the GEANT3-GEANE old chain:

The mathematics is that of Wittek (EMC Collaboration)

The tracking banks and routines are the same as in MC.

The user gives the starting and ending

planes or volumes and the tracking is done automatically.

It works very well (see the CERN Report W5013 GEANE, 1991).

2. "Modern” experiments:
in the software are implemented some tracking classes:

input: x;, T, , o;, step, medium, magnetic field
OU"’PU"': new Xi, Ti' G;
the user has to manage geometry, medium and detector interface

3. A GEANT4-GEANT4E chain there exists in the new GEANT Root

framework.
It is used by CMS but is not included into the official releases

(see Pedro Arce's talks in the Web)



