Bootstrap Methods



The bootstrap method for
confidence levels

With fixed efficiencies we have the binomial/gaussian
distribution
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The grid method for confidence

levels

For each value of p = N,/N; a sample of 100000 events
is generated sampling randomly the ¢ and b efficiencies.
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The bootstrap method for
confidence levels

In this case also the approximate bootstrap method
gives the same result.
This method is called Parametric Bootstrap
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The bootstrap method for BR

e A=15 Reaction A events in a N=200 event sample
e B=30 Reaction B events in a N=200 event sample

Standard error propagation for 95% CL

*(B)

: :
J(A/B)zl-%xg\/gﬁfug —~ =0.15 — [0.21,079], CL =95%

BJ

o=\ (1- 3)

Bootstrap methods:

e parametric bootstrap: the events A and B are MC-
sampled from two binomial distributions with N =
200 and p; = A/N and p2 = B/N;

e non parametric bootstrap: the events A and B are
sampled with replacement from two experimental
samples with N = 200 and A or B events = 1, the
others =0

Obviously, in this case the two methods give the same

result:
[A/B] € 10.24,0,86] , CL=9%

Are the published BR really all RELIABLE??



The bootstrap method for BR

binomial BER
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Consider a sample X containing N objects. We need an

estimate of 6 as (X).

No model of the X distribution is known or considered The non parametrlc
Statisticians have elaborated the following (non para- Sampling mefhods

metric) methods:

e Jackknife (Quenouille, 1949):

N samples are generated leaving out one element at
a time;

The best
one Il

® Subsampling:
S resamples of dimension Np are created by repeat-
edly sampling without replacement from th
imental sample. Obviously one ha

~

/

e Bootstrap (Efron 1979):
S resamples of dimension Np are created by repeat-
edly sampling with replacement from the experi-
mental sample. Usually Ng = N is set.

e Permutation:
used in the test between two hypotheses, by resam-
pling in a way that moves observations between the
two groups, under the assumption that the null hy-
pothesis is true

These methods, familiar among statisticians, are prac-
tically not (yet) used by physicists (only 3 papers with.___ Up to 2006
non parametric Bootstrap!)



Non parametric Bootstrap
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* Center: A statistic is biased as an estimate of the parameter if its sam-
pling distribution is not centered at the true value of the parameter. We
can check bias by seeing whether the bootstrap distribution of the statis-
tic is centered at the value of the statistic for the original sample.

bias More precisely, the bias of a statistic is the difference between the mean

of its sampling distribution and the true value of the parameter. The boot-

bootstrap strap estimate of bias is the difference between the mean of the bootstrap
estimate of bias distribution and the value of the statistic in the original sample.

+ Spread: The bootstrap standard error of a statistic is the standard devia-

tion of its bootstrap distribution. The bootstrap standard error estimates
the standard deviation of the sampling distribution of the statistic,




The non parametric

BOOTSTRAP

Consider a sample X containing N objects. We need an
estimate of ¢ as

0(X)
Using the Bootstrap sample, we obtain the estimator

0* = 0(X*)

The Bootstrap samples have expectation values 6* that
differ from the true one ¢ (bias), but ...
the Bootstrap approximates the distribution of

6—0
with the distribution of

o~

6* — @

obtained by resampling.
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Limits of non parametric

BOOTSTRAP

Drawback: the Bootstrap samples are correlated.
Some important results on this:

e the sharing of the same elements in different sam-
ples reduces the variance s, of the (re)samples:

Sies —7 (1—

where p = Np/N in subsampli
ment;

g without replace-

e the sampling with replacement i
the variance of the (re)samples

bootstrap increases

res

e in many cases in the bootstrap the positive bias due
to the within sample correlation and the negative
bias due to the between sample correlation cancel

exactly
V1= pyp1=1
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The non parametric

BOOTSTRAP

When does the Bootstrap work?

For the consistency of the method, the reliability must
be Bootstrap-checked, through the Bootstrap samples
themselves!

The important checks are:

e check the symmetry of the Bootstrap distribution,
that assures the bootstrap property. Find if neces-
sary a transformation h such as

-~ -~

h(6) — k() and h(6*) — h(H)

are pivotal, that is follow the same distribution.
Then make the estimate of the h intervals before
anti-transforming with A~!

e make different estimates with different bootstrap
samples (with replacement) Ny < N and verify that
the variances scales as 1/Np. This verify the condi-

tion
V1—=py/p1 =1

There exists a wide statistical literature on the sub-
ject....
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‘T'he bootstrap statistical method is applied to the discrepancy in the one-charged-particle decay
modes of the tau lepton. This eliminates questions about the correctness of the errors ascribed to
the branching-fraction measurements and the use of Gaussian error distributions for systematic er-
rors. The discrepancy is still seen when the results of the bootstrap analysis are combined with oth-
er measurements and with deductions from theory. But the bootstrap method assigns less statistical
significance to the discrepancy compared to a method using Gaussian error distributions.

At present there is a problem"? in fully understanding
the decay modes of the tau lepton to one-charged parti-
cle. The average directly measured value' of the in-
clusive, one-charged-particle, branching fraction B, is
(86.6+0.3)%. The same number should be obtained by
adding up the branching fractions of the individual one-
charged-particle modes. Examples of these individual
branching fractions are

B,, 1 —v.te +¥,,

B T v, tp Y,

wt

B, v —v +m ,

Hp, T =V, t+p v W -F-frﬂ,

Hﬂw-""" T v T +27°
.Bﬂﬂ_,;., 1'_—-1-'1.+11'_+31rﬂ' .

As shown in Table I from Ref. 2, this sum is less than
(B0.64+1.5)%, 6% less than the directly measured value of
B . This is the r-decay-mode problem.
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Bootstrap of B, and B, data

B,

Combined Energy
Measurement error iGeV)
84.0 +2.0 32.0-36.8
85.2+2.61+1.3 +2.9 14.0
B5.1=2.8+1.3 +3.1 22,0
B7.8£1.343.9 +4.1 34.6 average
B4.7+1.1°15 H 13.9-43.1
86.7+0.34+0.6 +0.7 29.0
86.9+0.2+0.3 +0.4 29.0
86.1+0.5+0.9 +1.0 30.0-46.8
87.9+0.5+1.2 +1.3 29.0
87.2+0.5+0.8 +0.9 29.0

+1.0

84.7+0.8+0.6

29.0

Experimental

group

Reference

CELLO
CELLOD
CELLO
PLUTO
TASS0
MAC
HRS
JADE
DELCO
Mark 11
TPC

H. J. Behrend er al., Phys. Lett. 1148, 282 (19382)

H. J. Behrend er al., Z. Phys. C 23, 103 (1984)

H. 1. Behrend er al., Z. Phys. C 23, 103 (1984)

Ch. Berger et al., Z. Phys. C 28, 1 (19835)

M. Althoff er al., Z. Phys, T 26, 521 (1985)

E. Fernandez ef al., Phys. Rev. Leit, 54, 1624 (1985)
C. Akerlof e al., Phys. Rev. Lett. 55, 570 (1985)

W. Bartel er al., Phys. Lett. 161B, 188 (1985)

W, Ruckstuhl ef af., Phys. Rev. Lett. 56, 2132 (1986)
W. B. Schmidke er al., Phys. Rev. Lett. 57, 527 (1986)
H. Aihara er al., Phys. Rev. D 35, 1553 (1987)

Trimmed mean 50%

Correlation between measurements
Weighted resampling Int(1/c2) times
The error on measurements is not considered

Scope of the analysis: to test wether errors only or the
data itself are unreliable



TABLE V. (a) Independent measurement of the +~ —e " ¥,v; and v~ —u~ ¥,v, branching fractions B, and B, in perceht, The sta-
tistical error is given first, the systematic error second. (b) Constrained or correlated measurements of the v~ —e " ¥,v, and
T~ —»p” ¥ v, branching fractions B, and B, in percent. The statistical error is given first, the systematic error second.

Reference

M. L. Perl er al., Phys. Lett. T0B, 487 (977)
M. Cavalli-Storza ef af., Lett. Nuove Cimento 20,

Y. Burmester et al., Phys., Lett. 688, 297 (1977)
W. Bacino et al., Phys. Rev. Lett. 41, 13 (1978)
J. G. Smith er al., Phys. Rev. D 18, 1 {1978)

W. Bacino et al., Phys. Rev. Leti. 42, 6 (1979)
R. Brandelik et al., Phys. Lett. 92B, 199 (1980)
Ch. Berger er al., Phys. Lett. 99B, 489 (1981)

H. J. Behrend et al., Phys. Lett. 1278, 270 (1983)
M. Althofl er al., Z. Phys. C 26, 521 (1985)

Ch. Berger ef al.,, Z. Phys. C 28, 1 (1985)

B. Adeva et al., Phys, Lett. B 179, 177 (1986)
W. Bartel ef al., Phys. Lett. B 182, 216 (1986)

P. R. Burchat er al., Phys. Rev. D 35, 27 (1987)

M. L. Perl ef al., Phys. Lett. 0B, 487 {1977}

A Barbaro-Galtiero et al., Phys. Rev. Lett. 39, 1058
R. Brandelik er al., Phys. Lett. T3B, 109 (1978)

C. A. Blocker er al., Phys. Lett. 1098, 119 (1982)
E. M. Baltrusaitis et al., Phys. Rev. Lett. 55, 1842

W. W. Ash et al., Phys. Rev. Lett. 55, 2118 (1985)

"B‘# B i
Combined : Combined Energy Experimental
Measurement  error  Measurement  error (GeV) group
(a)
17.5£2.7+3.0 4.0 3.8-7.8 Mark 1
22 Ly 4.8
337 (1977)

15 30  36-5.0 PLUTO
16.0 +1.3 3.1-7.4 DELCO

22 b 6.4-7.4 Iron Ball

21543 +6 3.6-74 DELCO
19 +9.0 35 +14 12-31.6 TASSO

17.8£2.0=1.8 +2.7  9.4-31.6 PLUTO
18.3£2.4x1.9  +£3.1 17.6£2.6%2.1 +3.3 340 CELLOD
204+3.0%13 *4H 129417251 *1.8  13.9-43.1 TASSO
13.0£1.9£2.9 +35 194*F1L6x1.7 +2.3 4.6 PLUTO

average

17.4+£0.6+0.8 +1.0  14.0-46.8 Mark J

17.0+0.7=0.9 +1.1  1858+0.810.7 +1.1 3.6 JADE
average
19.1+0.8x1.1 =14 183+0.9x0.8 1.2 29.0  Mark II
(b)
18.9+1.0+£2.8 +£30 183+1.0x2.8 +3.0 J.B-7.8 Mark I
2.7 55 221 +55  4.1-7.4 Lead-Glass
Wall (1977)
18.5+2.8+1.4 £31 18.0+2.8+1.4 +3.1 3.9-5.2 DASP
17.6t0.61.0 =13 17.1£0.6%1.0 +1.3 3.5-6.7 Mark I1
18.2+£0.7+0.5 209 18.0£1.04£0.6 +1.2 38 Mark III
{1985)

17.44+0.8+0.5 £09 17.7£0.8+0.5 +0.9 29.0 MAC
18.41t1.2+1.0 =£16 17.7£1.240.7 1.4 290 TPC

B

e
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Results

TABLE ¥1. Means and standard deviations (SD) for B,, B, B_, B,, and B . Both quantities are in

percent.

Analysis method

Bootstrap with Normal-error
Bootstrap weighted measurements method from
{method A) imethod C) Ref. 1
Branching Mean, Mean, Mean, Formal
fraction 259 trimmed sD 25% trimmed 5D not trimmed error
B, 85.8 0.63 86.9 .36 86.6 0.28
B, 22.5 0.35 22.5 0.19 22.5 0.8B5
B. 10.2 0.55 10.8 0.45 10.8 0.60
B, 18.3 0.38 17.8 0.30 17.6 0.44
B, 18.2 056 178 0.21 17.7 0.41
85.8—-81.3
Bootstrap: =3.1
V1.32 +0.62 d
5" +0. Some data are

86.6-80.6 unreliable

Standard analysis: =3.9

J1.5% +0.32
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The non parametric

BOOTSTRAP

A possible use of the Bootstrap in Nuclear physics

W
dﬁ- b 1
4—momenta =, /L experimental
result
X
bootstrap A

4—momenta
__%_ X
error on W

4—momenta

4—momenta

4—momenta
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BOOTSTRAP FOR COMPARING TWO POPULATIONS

Given independent SRSs of sizes rn and m from two populations:

1. Draw a resample of size n with replacement from the first sample
and a separate resample of size 7 from the second sample. Compute a
statistic that compares the two groups, such as the difference between
the two sample means.

2. Repeat this resampling process hundreds of times.

3. Construct the bootstrap distribution of the statistic. Inspect its
shape, bias, and bootstrap standard error in the usual way.

Useful when the two samples are
signal and background....

20



The dual Bootstrap

Fix the background on one sample and
calculated the peak signal
with another sample to avoid biases

Repeat on bootstrap samples (dual bootstrap) 21



Standard analysis in
nuclear physics experiments

e the 4-momenta are reconstructed and the
analysis is performed

e errors are calculated following the standard
(gaussian) theory

e a MC toy model is invented and the anal-
ysis procedure is checked on this model

e at this point the procedure could be further
checked on bootstrapped data!
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A word on the permutation tests

P-value

Sampling
distribution
when Hj is true

Observed statistic

FIGURE 1419 The P-value of a statistical test is found from
the sampling distribution the statistic would have if the null hy-
pothesis were true. It is the probability of a result at least as
extreme as the value we actually observed.

GENERAL PROCEDURE FOR PERMUTATION TESTS

To carry out a permutation test based on a statistic that measures the
size of an effect of interest:

1. Compute the statistic for the original data.

2. Choose permutation resamples from the data without replacement
in a way that is consistent with the null hypothesis of the test and with
the study design. Construct the permutation distribution of the statis-
tic from its values in a large number of resamples.

3. Find the P-value by locating the original statistic on the permuta-
tion distribution.
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Conclusions

‘Poissonian Counting: most of the tests

do not consider the error on background and
overestimate the signal. Often true (mean) values
and measured values are improperly confused.

‘Binomial counting: a general theory there exists
and should be applied.

‘The errors should be calculated by MC methods
and the procedure checked with MC toy models

‘Nonparametric Bootstrap methods should be used
also by physicists
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