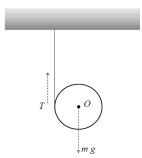

Meccanica 13 febbraio 2013

Problema 1 (1 punto)


Nella situazione riprodotta in figura, il corpo di massa m=1 kg ha velocità \mathbf{v}_0 diretta lungo l'asse della molla, mentre la molla, di costante elastica k=100 N/m, non è né compressa né allungata. Tra il corpo e la superficie orizzontale di appoggio c'è attrito statico e dinamico con coefficienti $\mu_s=0.6$ e $\mu_d=0.4$ rispettivamente.

Si determini il valore del modulo di \mathbf{v}_0 affinché il corpo rimanga fermo quando la molla ha raggiunto la elongazione massima.

Proble ma 2 (1 punto)

Un filo inestensibile, di massa trascurabile, è avvolto intorno ad un disco omogeneo di raggio R e spessore trascurabile. Si tiene ferma l'estremità libera del filo e si lascia libero il disco di cadere in puro rotolamento sotto l'azione della forza peso mg. Si determini l'accelerazione a dell'asse del disco. (Momento di inerzia del disco rispetto all'asse passante per O: $I=mR^2/2$).

Proble ma (2 punti)

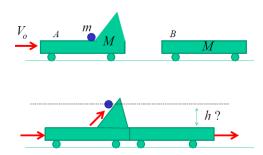
Un satellite artificiale di massa m=200 kg, in rotazione intorno alla terra in un orbita circolare di raggio d=500 km dal suolo, viene spostato e quindi lasciato libero in un'altra orbita circolare a distanza 2d dal suolo. Si calcoli il lavoro L necessario per effettuare questo spostamento.

(Raggio della terra 6378 km, Massa della Terra M=5.97 10^{24} kg, costante gravitazionale G=6.67 10^{-11} Nm²/kg).

Problema (2 punti)

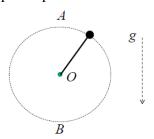
Su una superficie piana priva di attrito due carrelli A e B di masse $m_A = 360$ kg e $m_B = 480$ kg, liberi di muoversi in ogni direzione, si muovono inizialmente in direzioni parallele e versi opposti con moduli delle velocità $|\mathbf{v}_A| = 30$ km/h e $|\mathbf{v}_B| = 45$ km/h. Nell'istante in cui i

due carrelli si incrociano passando molto vicini l'uno all'altro, una persona di massa m= 60 kg salta dal carrello A sul quale si trova, al carrello B con velocità, rispetto a un sistema di riferimento solidale con la superficie piana, di modulo $|\mathbf{v}|$ =10 m/s e direzione ortogonale a \mathbf{v}_A .


Si calcolino le velocità finali V_{xA}^f , V_{yA}^f , V_{yB}^f , V_{yB}^f dei carrelli.

Problema (2 punti)

Un corpo di massa m = 100 kg è mantenuto in quiete alla base di un piano inclinato fissato sopra un carrello A in movimento su una superficie orizzontale liscia con velocità Vo=4.4 m/s. La massa complessiva del carrello e del piano inclinato, escluso il corpo, è pari a M=500 kg. Il carrello A va ad urtare contro un secondo carrello B, fermo sulla superficie orizzontale, anch'esso di massa M. Si descriva con equazioni opportune il seguente processo:


- 1. Il carrello A urta il carrello B e dopo l'urto anelastico i due carrelli restano uniti e procedono con velocità V_1 , mentre il corpo resta libero di muoversi;
- 2. Il corpo scorre senza attrito e sale sul piano inclinato mentre i carrelli procedono con velocità V_1 ;
- 3. Il corpo arriva alla quota h e si ferma. Il sistema procede come un tutto con velocità V_2 .

Trovare V_1 , V_2 e l'altezza h.

Proble ma (2 punti)

Un corpo di massa m=1 kg, collegato ad un punto fisso O da una fune inestensibile di massa trascurabile e lunghezza R, ruota su una traiettoria circolare verticale. Si determini la differenza $T_{\rm B}$ - $T_{\rm A}$ tra la tensione della fune nel punto più basso B e nel punto più alto A.

Risultati

N. di Matricola	Punteggio
345353/10	4/10
391687	3.5/10
399728	3.5/10
400033	4.5/10
403314	3.5/10
IB	2.5/10