Use of the
likelihood principle
in physics
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Maximum Likelihood

Likelihood function:
L(6; ) = p(x11,Za1, .., Tm1; @) p(T12, T22, .y Ti2; 0)
X P(T1n, Tony -0y Tonn; @) = El p(x;;0) ,

the product covers
all the n values of the m variables X.

Log-likelihood:
L=—-In(LO; x)) = —El In (p(x;;0)) ,
Max L corresponds to Min L.
For a given set of
r=x,T,...,T,
observed values, from a
X=(X,Xs....X,)

sample with density p(x;6), the ML es-
timate 6 of @ is the maximum (if any)
of the function

maxe [LLH; :E\J] — IMaxg

Ell p(@:; 9}] = L(6; z)



Maximum likelihood

or, 9 Ll:Tl p(;; 9)]

88,#: Gﬁk =0
or
oL n| 1 Op(=;0)] o |
ooy, El ;ﬂ(ﬂ:é;ﬁi) 00 ] 0, (k=12....p).

e before the trial, the likelihood function L(6:
is x to the pdf of (X, Xo,... X,);

e before the trial, the likelihood function L(6:
is a random function of X;



e frequentist view: maximize the function

L(O; x)= i[l p(x;0), or In(L(O; x)) = -l-;ln (p(x;;0)) ,

or minimize
~2In (L(6; 2)) = —23_ In (p(x;; 0))
i=1
w.r.t the parameters 6.

e Bayesian view:
maximize the posterior probability

L(16) p(6)
POl2) = i ooy a  HEOPO)

e Bayes maximization updates the prior p(60)

e when the prior p(0) is uniform (constant)
technically the frequentist and the Bayesian
approaches coincide because both maximize
L(0; ) (but the meaning is different)

e Bayesian estimators are not independent of
the transformation of the parameters, the
frequentist ones are independent of them!

Bayesians
VS
Frequentists



Why ML does work?

hypothesis l l observation

____________________

osservazione X

The p(z;0) form
is fitted to data
by maximizing
the ordinates of the observed data



Example

An urn with three marbles

®e® O (e

p=1/3 p=2/3

An experiment with 4 drawings:
4!
z!(4 — x)

plz;n=4,p) = p*(1—p)t?

x=0 x=1 x=2 x=3 x=4

p(z;4,p=1/3)|16/81 32/81 24/81 8/81 1/81
p(z:4,p=2/3)| 1/81 8/81 24/81 32/81 16/81

The likelihood estimate:
p=1/3if0<z<1
p=2/3if3<z <4

no maximum if r = 2



Example

In n trial r successes have been ob-
tained. Make the ML estimate of p.
Binomial density
L=—zln(p)—(n—a)In(l —p) .
Minimum w.r.t. p:
dLl r n—=x .x
——=——+ =0 = p=—=
dp p 1—p n
Make the ML estimate of p when z;
successes on n, trials and z, successes
on n; trials have been obtained.
Two binomials with the same p:

L=p"p2(1—p " (1—p" .
With logarithms:

L = —(z1+x9) In(p)—(n1—z1+n9—x3) In(1—p) ,
dL @) +x N (N1 +ng) —x1 — 22

dp p 1—p
I +— I

0

Ty — N9



From the n values z; of a Gaussian vari-
able, find the ML estimate of mean and
variance

Likelihood function:

— 5ty Tilzi—p)?

LEF=

1
L —
(lu’? U) ( ,-"Qﬂ_ U)n
The log-likelihood:
_.n NS Sy
‘E’(Ju: U) T +2 IH(Z?TU ) T 252 i:l(Ii _,'_L) !
Put the derivative =0:
oL 1




Estimators

e Estimator of 6
If X 1s a data sample with dimen-
sion n of a m-dimensional random
variable X having p(X;f#) as a pdf,
an estimator is a statistics

To( X) = ta( X)
for which T : S — 6.

e Consistent estimator of ¢
lim P{|T,, — 0| <e}=1, Ve>0.

e Correct or unbiased estimator

(T,) =46, Vn

® The most efficient estimator
T, is more efficient than @), if

Var[T),] < Var|Q,], Vf8cO.



Theorems on L(#; X)

The mean value of the Score Function is zero:

%,
(g5 P(X:9)) =0
The variance of the Score Function is the Fisher
information:

Var ;ﬁlnp[x 6‘)] = <(;; Inp(X;0) — <§9111P(X 9)))2)

= <(%lnp()( ﬁ?}r}EI(OJ

These remarkable relations hold:

I(0) = <(%lnp()( ﬂ)f) <(;]; 111p(X;0]> .

<(%1”L)> <(00%mp{x ”))3 <(%l“p)2>:”‘r@’

The Cramér Rao theorem:
If T, is an unbiased estimator

1 1
n <(%IHP{X;9))E> - nl(0)

Var[T,| >

10



Binomial, Poisson, Gauss

Inb(X:p)=Inn!—In(n — X)) —In X!+ XInp+ (n— X)In(l — p)
Inp(X;p)=XInpg—InX!—p

lng(X;ﬂwJ):ln( 1 )_E(X_H)E

2mo 2 a
These are random functions.
d X n—-X X-—-np
—Inb(X;p) = — — =
Op (X:p) p l—=p p(l-p)
d X X —u
—hnp(X:pu) = ——1= ,
@a“ (X5 ) p p
X — 1 X —pu
—1 X:_ ) = —_— _—— f—
o ng(X;u,o) . ( J) p
according to {é%lnp(X; ﬂ)_} = (
Information:
1 . np(l — p) n
(») p*(1 — p)? ( P)) p*(1—=p)?  p(l—p)

11



Golden results

. If T, is the best estimator of 7(), it
coincides with the ML estimator
(if any)

T, = T(é) .

. the ML estimator is consistent

. under broad conditions, the ML es-
timators are asymptotically normal.
That is (§— 0) is asymptotically nor-
mal with variance

1

nl(6)
. the score function dIn L/06 has zero

mean, n/(f) variance and is asymp-
totically normal

. the variable
2(In L( 6)— In L(0)]

tends asymptotically to x*(p), where
p is the dimension of ¢

12



Likelihood confidence intervals

e . s

L(O) ~ L(O)+L'(0)(0—0)+ %E”(é)(ﬁ — )’

om0,
~ L(6) + 5 —=(0 - 0)
~ ﬂ(é)+”{§€ 0 — 0)2

2[ln L(4) — In L(0)] ~ nI(6) (0 — 6)
If one sets:
n(0) for which nl,(n) = 1:

. 1.
In Ly(7) — In Ly(n) ~ 5 (H—n)* .
. 1. 1
In Ly (7)) =10 Ly(m) = 5 (7 = m)* = 5xa(1) 5 -

Since 7 ~ N(n,1):

InL,(7) — InLy(n) = 0.5 CL = 68.3%
InL,(n) —InLy(n) = 2 CL=953%

In general:

2AIn L] =2 (In L(6) —In L(0)) = x5(1)
Multidimensional case:

2An L] = 2 (In L(8) — In L(8)) = x2(p)

13



InlL(6)

14



likelihood

7~

I'1 =18 +:J|E~.a:‘f‘~H

2 st. dev

max

likelihood

mean / r.m.s.

— .
B68.3 % confidence

Fig. 18, Likelihood ratio limits (lett) and Bayesian limits (right)
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The 3 event experiment (again)

Likelihood:

R e
L(,u,:r:)—?e ., j=r=3.

lo interval:
2]ln L{jg;z) — L(p; z)] = 1
3In3 -3 —-3np+p=05
w—Inp = 0.2041

i = [1.58,5.08]
Remember the 68% frequentist interval:
p=|1.37,5.92|

16



The model is given by: .
T r , Fit of
1i(@) =N [ﬂu p(x;0)dx ~ Np(zy;0)A; = Np;(0) |

’ Histograms
iy X) \+

a

L6 m) = I pO)" . i
L= —InL(6:;n) —é n: In[pi(6)] . R

The second one correspond to the / \
pseudo-y? minimization. Indeed: /

ko n; Opi(0) k. on; — Npi(@) Opi(0) / \

> >
il N

=1pi(0) 98; = pi(@) 00
since ¥; p;(0) = 1 implies 3, dp;(0)/96; = 0. W50 w70 ® %0 1w
This
formula is
from ML Il

The last member corresponds to the derivative
of

(ni — Npi(0))? _ (n; — Np;(8))*
Np(6) % n |

with a constant denominator 17

=3
i



The extended likelihood

When the total number of events is a poissonian variable:

P{I, = n;, N = N} = P{I, = n;/N = N}P{N = N}
NI v € AN

— E — ':{H].—J"
p(ri, N) n! (N —n;)! pir(l = pi) N

If m;=N —n,

e — oM g AL-D;)

N oAN—m: v vime v
AN = ANy g g

and

~APi (AN oA (1-p;) .\

e Api)tioe A1l —p,

fp{ﬂg, Tﬂ,f) — TE_1 e) Erng t)] :
11 I"i'!

is the product of two poissonians, with averages Ap; and
Al — p;)

Conclusions: the number of events in any channel
follows the Poisson statistics



The extended likelihood
CTTA s
L(H,Q)—U v e ¥

—InL(6,n) = _Z n; In[ 4 (6)] "‘Z:Ui (0)

Since 1 =N p.(6)

LM ==, In[p,(O)] + N ()

N is a function of @ as in the case of a detector efficiency,

If there is no functional relation between N and O

the result is the same as for the non extended likelihood

19
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o 250 p= 0.522 0.015
Binomial 20
p=0.5 IS + p= 0.528 0.017
10
g—a" | ' '
0 2 4 X 6

C 200 - 1 =70.09 0.31
Ga;s(,)smn <ol / c=9.73 0.22
K= ‘ /
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The other branch
of Statistics:
Hypothesis Testing

21



..in Physi
P(Ho) P(H,) ~" 7%

exp\value
true De?iqion
hypothesis Ho \ H,
H, correct|decision tyre I error
| F o Qv
no effect | good rejection | contamination
H, type ‘I error | correct decision power
Jé] 1 — <
effect event loss good acceptance

If H, is the discovery, the maximum power
test maximizes the discovery probability, that
is the good acceptance

22



When two simple hypotheses are given
Hy:0=286,, Hi:06=06,.
the most powerful test, for o given, is
L .
uesn )
L(61; X) ~

reject  Hy if {R(X)

S

A

PIROOH,) A Milestone:

the Neyman-Pearson
theorem

2.

Likelihood Ratio
" Test

That is:
the best test statistics is R
or any random vartable T : R =y(T).

23



e it holds for simple hypotheses

e for composite hypotheses like

HU : leﬂ, ggzb
Hl ) Ql#ﬂ, Qg#b

or
Hy : 9:{13
Hl 920&
the NP ratio
L(6|H
R (6] Ho)

ma}i[ﬁ'e@ﬂL(Q'Hl)

is optimal, but only asymptotically

(theory is complicated!!)

e if H; has r free parameters more than
H,, then

—2In R ~ x*(r)

A Milestone:
the Neyman-Pearson
theorem: limitations

24



The average number of background events Nj
has been measured

A model predicts a number of signals Ng

The experiment measures the = triggers: O

Hj no signal p=Np
H, there is signal pu = N+ Ng

NP ratio:

= R application
(Ng + N,r;) exp|—(Ng + Np)|/z! PP o
_ N \* _ne 2
a (JMS —+ i'T\'TH) © = ﬂrb o {U(‘T)

Conclusion: the test statistics

X —N X —-N
S = S X =In R/In(ab)

Np

has maximum power, because R can be ex-
pressed as a function of z. o5



The powerful LR test is used usually on his-
tograms with N, channels:

é ](.53 + b; )”1 € —(si+bi) /nz Ne
— S = S; .

@= 1,24 b e=bi /! o i§1 ©
where n; is the number of observed events s; O
and b; are the expected signal and background Q
events, b, and s, are obtained via MC

One obtains easily:

In@ = —Sit + anln(1+b)

i=1

Likelihood
Ratio

Usually one compare the quantity
—21InQ ~ x*> (asymptotically)

obtained experimentally (n; = contents of the
experimental bins) with the background (n; =
b;) and the signal plus background (n; = s; + b;

hypotheses. In this way, for an established

signal to noise ratio, one performs the most n; from MC
powerful test, maximizing the signal discov- SGf\'\plCS'
ery probability, taking into account not only :
the global number of the events, but also the 26

shape of the distributions (see LEP data).



Steps of the likelihood ratio test

Ne 8-
In Q — _S[m_ + Z T In (J. -+ %)
i=1 i

Determine the ratio s./b; for each bin
(model + MC simulation)

27



The Higgs at LEP in 2000

On 3 November 2000 in a seminar at CERN the LEP Higgs working group pre-

sented preliminary results of an analysis indicating a possible 2.9 observation

of a 115 GeV Higgs boson [1]. Based on this analysis the four LEP collabora-
tions requested the continuation of LEP to collect more data at /s = 208 GeV.
However, the arguments presented by the LEP collaborations did not convince
the LEP management and in retrospect, it turned out that the LEP accelerator
turn-oft date of 2 November 2000 ended 1ts eleven years of forefront research.

enough. However, the statistical arguments presented by the LEP Higegs working
group were not based on these distributions, but rather on a sophisticated, though
heautiful statistical analysis of the data. Two years after the event, when the last
analysis of the LEP data indicated that the significance of a Higgs observation in
the vicinity of 115 GeV went down to less than 2a [2], it becomes apparent that

the LEP Standard Model (SM) Higgs heritage will in fact be a lower bound on

the mass of the Higgs boson. However, the LEP Higgs working group has tanght
us powerful and instructive lessons of statistical methods for deriving limits and
confidence levels in the presence of mass dependent backgrounds from various
channels and experiments. These lessons will remain with us long after the lower
bound becomes outdated.




Available online at www.sciencedirect.com

SCIENCE @mnz:‘r-
PHYSICS LETTERS B

ELSEVIER Flymies Letters B 565 (2003) 81-75

wwwalsevier com locate pe

Search for the Standard Model Higgs boson at LEP

ATLEPH Collaboration !
DELPHI Collaboration -
L3 Collaboration®
OPAL Collaboration *

B . . &
The LEP Working Group for Higgs Boson Searches”
Feceived 7 March 2003; recoarvad m revised form 25 Apnl 2003; accepted 28 Apnl 2003
Editor: L. Foland:

Ahbstract

The four LEP Collaborations, ALEPH, DELFHI. L3 and OPAL, have collected a total of 2461 pl::u_1 of ete™ collision data at
centre-of-mass energies between 189 and 209 GeVV. The data are used to search for the Standard Model Higgs boson. The search
results of the four Collaborations are combined and examuned n a likehhood test for thewr consistency with two hypotheses:

the background hypothesis and the signal plus background hypothesis. The comesponding confidences have been computed as
functions of the hypothetical Higgs boson mass. A lower bound of 114.4 GeV/¢? is established. at the 95% confidence level, on
the mass of the Standard Model Higgs boson. The LEP data are also used to set upper bounds on the HZZ couphng for vanous
assumptions concermng the decay of the Higgs boson.

ie» 2003 Elsevier B.V. All nghts reserved.
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Evenis/ 3 (}E\}"C: Evenis / 3 GeV/ :

Events [ 3 GeV/ :
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10

h

Vs = 200-210 GeV

—+ LEP 5/B=0.3

—— background

mmm hZ Signal
(=115 GeV)

all = 109 GeV
27

cnd= 200 by
bgd= 201.75 20.41
sgl= 10.26 6.11

+

Vs =200-210 GeV

—+ LEP S/B=1.0

—— background

mmm hZ Signal
(=115 GeV)

all = 109 GeV

cnd= £9
bgd= 55.26 3.56
sgl= 4.66

.94

b

Vs = 200-210 GeV

-+ LEP S/B=2.0

—— background

mmm hZ Signal
(=115 GeV)

all jl 109 GeV

cnd= 24

d= 21.79 1.13

sgl= 1.74 1.78

1 =1 I —— y—l

alle

=

20 40

60

80 100 120

Reconstructed Mass my [G-e\-'e"c:]

LEP real data

Three selections of the
reconstructed Higgs mass
of 115 GeV to obtain
0.5/1/2/ times as many
expected signal as
Background above 109 GeV
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1es / Phvsics Letters B 565 (2003) 61-75

ALEP, DELPHTI,
L3, OPAL, 2003

N& 25 1 LEP  Vs=200209 Gev Loose
> i
(=P - & Data
U 20 i I_W . S
™ - I SEnal (115 GeVie) 4 N ==5: “n:In(1 + =)
% i
=15 | all > 109 GeV/c’
§ T R One can sum-up over
&3 :%Hﬂ‘!kﬂd 1165 158 the bins Of histogr'ams
10 _-;Sngmil 10 7.1 fr'om differ'en‘l'
experiments
5 T and to construct a
: % GLOBAL statistics!
ﬂ B —_ .

0 20 40 60 30 100 120

m rec (GeV/cz)
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___—MC toy model

First problem: due to
detector efficiencies and
to undetected

o = T neutrinos which

oM T s O 0 s o0 s igp foe Do N accompain the Higgs

' decay products, the
reconstructed mass could
not coincide with the
true mass

The figure shows the
weight In(1+s/b) when

e the reconstructed mass

_ is 110 GeV and the
T weights are calculated
I N for true Higgs masses
bewtween 110-120 GeV
4 = . 1  The weight plot was called
A N spaghetti plot 32

Rc—__n tr t d mass Test mass



Expt E.n Decay channel | m,.. (GeV) In{l + s/b)

at 115 GeV
1 | ALEPH 206.6 4-jet 114.1 1.76
2 | ALEPH  206.6 4-1et 114.4 1.44
3 | ALEPH  206.4 4-jet 109.9 0.59
4 | L3 206.4 E-miss 115.0 0.53
5 | ALEPH 205.1 Lept 117.3 0.49
6 | ALEPH 2065 Taus 115.2 0.45
7 | OPAL 206.4 4-1et 111.2 (.43
8 | ALEPH 2064 4-jet 114.4 0.41
9 | L3 206.4 4-jet 108.3 0.30
10 | DELPHI 206.6 4-jet 110.7 0.28
11 | ALEPH 2074 4-jet 102.8 0.27
12 | DELPHI 206.6 4-jet 07.4 0.23
13 | OPAL 201.5 E-miss 108.2 0.22
14 | L3 206.4 E-miss 110.1 0.21
15 | ALEPH  206.5 4-jet 114.2 0.19
16 | DELPHI 206.6 4-jet 108.2 0.19
17 | L3 206.6 4-jet 109.6 0.18

Table 1: Properties of the candidates with the highest weight at my = 115 GeV. Table

is taken from [2].
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Steps of the likelihood ratio test

Ne 8-
In Q — _S[m_ + Z T In (J. -+ %)
i=1 i

Determine the ratio s./b; for each bin
(model + MC simulation)
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Figure 6: The separation between the Signal and the Background for various
Higgs masses 1s shown by their hikelihood p.d.f's.



Observed
Expected for background

Expected for signal (my=116 GeV/c™)

+ background

LEP

~

Probability density

Probability density

Expectad for backzround
Expectad for sigmal (m, =120 Gel
+ mckgrommd = !

-2 In(Q)

With a mass of 116 GeV
10% of the background
only experiments give
the observed signal

With a Higgs mass of
110 GeV the

_— data are consistent

with the background
only hypothesis

With a Higgs mass of

L7120 GeV the

data are not able to
discriminate
between the

hypoth
ypotheses .
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Figure 8: Observed and expected behavior of the lhikelihood —2Ind) as a
function of the test-mass mpy for combined LEP experiments. The solid/red
line represents the observation; the dashed/dash-dotted lines show the median
background /signal+background expectations. The dark/green and light /vellow
shaded bands represent the 1 and 2 o probability bands about the median back-
ground expectation [2].
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Figure 9: Observed and expected behavior of the likelihood —21In @) as a function of
the test-mass mpy for the various experiments. The solid /red line represents the obser-
vation; the dashed/dash-dotted lines show the median background/signal+background
expectations. The dark/green and light /vellow shaded bands represent the 1 and 2 o
probability bands about the median background expectation [2].

40



-2 In(Q)

) ALEPH
" DELPHI
L3
20
OPAL
10
2003
0
i ;_ — Observed /'I | —5 TH
- meeussees Expected for backgrogn .
-20 :_ ------ Expected for signal /plus‘:Iackground B
A Brloswtepbopbeh o bdia Liai iy 59,
106 108 110 112 11‘1 116 118 120
m(GeV/c?)

m, > 114.4 GeV/c2  CL=95% a



Conclusions

The broad minimum of the combined LEF likelihood
from my ~ 115 — 118 GeV which crosses the expectation for s4+b around myg ~
116 GeV can be interpreted as a preference for a Standard Model Higgs boson
at this mass range, however, at less than the 2o level. When the LEP Higgs
working group presented these results for the first time the significance was 2.9+
[1], and this relatively high significance generated a storm which unfortunately
turned out to be in a tea cup...

The ALEPH ohserved likelihood has a 3o signal-like behavior around mpy ~
114 GeV, which led the collaboration to claim a possible observation of a SM
Higgs boson [3]. This behavior originated mainly from the 4-jet channel and its
significance is reduced when all experiments are combined. No other experiment
or channel mdicated a signal-like behavior.
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1. the Bayesian refuses the concept of an ideal
ensemble of repeated, identical experiments;

2. the probabilities of the errors of I and II
kind are then replaced by the probabilities
of the hypotheses

test statistics parameters
Bayesian certain random
frequentist random certain

A BIG problem:

P(data|Hy)P(Hy)
x; P(data| H;) P(H;)

unknown!

P(Hg|data) =

A solution: the Relative belief updating ratio:
- P(Hy|data)  P(datal|H,)P(Hy)
- P(H,|data)  P(data|H,)P(H,)

e the R values help the model choice, but the
choice is subjective!!

R

e the P(H,), P(H,) priors are necessary

® o, B ,1— 3 are not calculated

Bayesian
Hypothesis
test
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Gravitational Bursts
(P.Astone, G.Pizzella,workshop (2000))

n. counts are observed in a time T
r, and r, are the background and signal fre-
quencies:

ns = rsl unknown , ny, = 131" measured

Relative belief updating ratio
with P(Hy) = P(H):

—(rs+ry)T [( 4+ )f]nc Ne
‘ B e Ts T'p)t —Ts
R(T_g:. Mg, Thy T) - e—'r‘g,'T' [TE]T]??IC T (1 " Tﬁ')

Ifn.=0
R=e"T

depends on the signal frequency only.
Arbitrary Standard Sensitivity Bound:

R=e"" =005 —r, =299 ~ 3

Rule: this is the sensitivity of the experiment
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Gravitational bursts

24
10 / B ——— =5
________ n:]
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Figure 1: ratio I for the poisson intensity parameter r in units

of events per month for an expected background rate r
event /month and for n = 0, 1, 5 observed events

T T\ e
e 'T'ST (1 + _S) , Ty = 1
L

Bayesian Conclusions:

= 1

e If "s< 0.1 the data are not relevant;

e r.> 20 is excluded by the experiment;
e if N=5 the most probable hypothesis is 47
Ty =4



Conclusions

‘The maximum likelihood (ML) is the best estimator in
the case of parametric statistics problems

*‘The likelihood ratio is the maximum power test, that
maximize the discovery potential

*The likelihood ratio permits to match toghether
different experiments and to realize the Neyman
frequentist scheme
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Figure 3: Evolution of the event weight In(1 + s/b) with test-mass myg for the events

with the largest weight at my = 115 GeV. The labels correspond to the candidate

numbers in the first column of Table 1. The sudden increase in the weight of the

OPAL missing-energy candidate labeled “13" at mpg = 107 GeV is due to the

switching from the low-mass to high-mass optimization of the search at that mass.

A similar increase 1s observed in the case of the L3 four-jet candidate labeled “17”

which 1s due to a test-mass dependent attribution of the jet-pairs to the Z and 52
Higgs bosons. The Figure is taken from [2].



