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1

Introduction

This lecture notes are for the Quantum Electrodynamics course of the University of Pavia.
This course represents the first introduction to the topic of Quantum Field Theory. It is a
one-semester course and it is meant to be followed by a second course on Quantum Field

Theory.

Why do we need a Quantum Field Theory? The goal is to have a theory that is compat-
ible both with Special Relativity and Quantum Mechanics, i.e., a theory for “Relativistic
Quantum Mechanics.” It turns out that this requires the use of a field theory. In such a
theory, the “particles” are identified with oscillations of a field.

Classical nonrel.

Classical rel.

Classical nonrel.

Classical rel.

particles particles tields tields
Quantum nonrel. ntumrel. Quantum nonrel. Quantum rel.
particles icles fields fields

The “problem” of merging Quantum Mechanics and Special Relativity can be intu-
itively seen in the following way. Consider a state with a measurable lifetime AT and a
measurable energy. The standard deviation of the energy of the state can be related to its
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lifetime via Heisenberg principle.1
AEAT > 1/2. (1.1)

This relation can be interpreted by saying that a state with extremely short lifetime can
have an extremely large energy dispersion. For time intervals of the order of 71/ (4m,.c?) ~
107225, the energy uncertainty can be as large as the rest energy of an electron and a
positron. This opens up the possibility that a state composed by an electron and a positron
is created out of nothing, as long as it decays in a short-enough time. Thus, the vacuum is
not really empty. Most of this relentless activity in the vacuum has no measurable effect.
However, it has to be taken into account when we carry out high-precision experiments
at subatomic level.

Nowadays, it is common wisdom that particles can be created out of energy. By collid-
ing an electron and a positron at high energies, we can produce all sorts of other particles,
including Higgs bosons. However, it is not possible to describe this process within par-
ticle mechanics, because in this case particles are considered to be there in the first place,
they cannot be created nor destroyed. A similar problem occurs with spontaneous emis-
sion of photons from atoms. Richard Feynman told this story about this problem:

My father once asked me: “I understand that they say that light is emitted
from an atom when it goes from one state to another, from an excited state to
a state of lower energy.”

I said, “That’s right.”

“And light is a kind of particle, a photon, I think they call it.”

“Yes.”

“So if the photon comes out of the atom when it goes from the excited to the
lower state, the photon must have been in the atom in the excited state.”

I said, “Well, no.”

He said, “Well, how do you look at it so you can think of a particle photon
coming out without it having been in there in the excited state?”

I thought a few minutes, and I said, “I'm sorry; I don’t know. I can’t explain it
to you.”

He was very disappointed after all these years and years of trying to teach me
something, that it came out with such poor results.

This anecdote tells you how difficult can be to discuss the creation and annihilation
process with the language of “particles.” The situation is more flexible with field oscil-
lations: they can be created or suppressed, corresponding to the creation or destruction
of particles. The electromagnetic field serves as a good example: we are not so suprised
about the fact that electromagnetic radiation can be absorbed or created by atomic transi-
tions. In fact, it turns out that the calculation of the coefficients of absorption, spontaneous

INote that this is 1ot a relation between energy and external time, but between energy and the lifetime
of the state
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emission and stimulated emission can be carried out within quantum field theory without
resorting to any extra assumption (see discussion in Sec. 1.2 and 1.3 of [31]).

From nonrelativistic classical particle mechanics, we know how to obtain nonrelati-
vistic quantum particle mechanics and also relativistic classical particle mechanics. We
will try to build a theory of relativistic quantum particle mechanics, but encounter some
problems. The first part of the course will be devoted to this.

We can turn for inspiration to the description of the ElectroMagnetic (EM) field. Itis a
classical field theory that is from the beginning relativistic. It turns out that it is possible
to quantize this theory, thereby obtaining a theory which is relativistic and quantistic,
containing field quanta that can be identified with “particles” (photons). When the EM
field interacts with particles at the atomic level, but whose momenta are not large, it is
still possible to treat the EM field as a quantized field and the particles as nonrelativistic
quantum particles: this is the approach of Quantum Optics. But the ideas underpinning
the quantization of EM fields can be applied also to fields of different types. Their field
quanta can be identified with other particles. In this approach, particles are like ripples
in fields that fill the whole space. The second part of the course will then be devoted to
understanding relativistic classical field theories and how to quantize them.

The conceptual steps of field quantization are needed just to describe free particles, i.e.,
free fields. But we want of course also to be able to describe the interaction of different
particles/fields. We are going to study scattering processes, where we assume that we
start from an initial state consisting of free fields, the fields then undergo an interaction
and end up into a final state again consisting of free fields. A classical analogy may
be when a sound wave hits a membrane, it is partially reflected and partially absorbed
giving origin to a vibration of the membrane.

In a scattering process we always start with some particle (i.e., some excitation of the
fields) and end up with some other particles, after some interaction has occurred. The
strength of the interaction is determined by the “coupling constant.” In principle, the
particles can interact (infinitely) many times, but if the coupling constant is small, we can
expand the computation in a perturbative series and stop at a certain number of inter-
actions. For instance, in QED we have the coupling constant (in rationalized Gaussian
units, also called Lorentz-Heaviside units)

e2 1

“= 47he ~ 137

(1.2)

It makes then sense to stop the calculation at the lowest order in «, since the corrections
will be of the order of 1%. For highly precise computations and/or for theories where the
coupling constant is larger it is essential to go beyond.

The contributions to the scattering at a given order of the coupling constant can be
conveniently described by the so-called “Feynman diagrams.” For instance, if we want
to compute the scattering of a photon and an electron (Compton scattering), we have to
take into consideration diagrams of the type depicted in Fig. 1.1.
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Figure 1.1: Feynman diagrams contributing to the process of photon-electron scattering (Compton scat-
tering). The first two diagrams represent two different “time-ordered” contributions to the same Feynman
diagram.

In this course, we will stop at the lowest order in the coupling constant. We will con-
sider only the so-called “tree-level diagrams” as opposed to diagrams containing loops.
At the end of the course, you should in principle have the tools to compute any tree-level
diagram in QED and other theories.

For loop diagrams and all the fundamental issues related to them, you should attend
the Quantum Field Theory course in the second semester.

QED is probably the theory that has been tested to the highest accuracy in exper-
iments. For instance, the theoretical computation of the electron anomalous magnetic
moment agrees with the experimental measurement at the 102 level. However, to reach
this kind of precision QED calculations have to be carried out to order ot involving 891
Feynman diagrams [24] (calculations reaching order a® have also been performed [4]). By
the end of the Quantum Field Theory course, you will be able to compute the order « cor-
rection and reach an agreement with the experimental value of within a few percents [35].

a,(O(«)) = 0.00116 (1.3)
a,(O(a*)) = 0.0011596521817(8) (1.4)
Ge|exp = 0.00115965218091(26) (1.5)

Most of the applications of Quantum Field Theory have to do with Elementary Particle
Physics, i.e., the study of what we at present consider the fundamental constituents of
matter. It is ironic that what we call “Particle Physics” is based on the notion that particles
do not exist, but have to be replaced by field excitations! Carlo Rovelli uses these inspiring
words to describe the world of quantum field theory, in his book “Seven brief lessons on
Physics”

Just as the calmest sea looked at closely sways and trembles, however
slightly, so the fields that form the world are subject to minute fluctuations.

[..]

We have arrived very far from the mechanical world of Newton and Laplace,
where minute cold stones eternally travelled on long precise trajectories in
geometrically immutable space. Quantum mechanics and experiments with
particles have taught us that the world is a continuous, restless swarming of
things; a continuous coming to light and disappearance of ephemeral entities.
A set of vibrations, as in the switched-on hippy world of the 1960s. A world
of happenings, not of things.
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However, the ideas of field quantization can be used also to study nonrelativistic
quantum many-body systems, which are extremely important also in Solid State Physics.

1.1

Recommended resources

As with all courses at the M.Sc. level, you are encouraged to look at more than one refer-
ence to gain a deeper knowledge of the subject.

These lecture notes are largely based on older lecture notes by prof. F. Miglietta
(available in the library).

The calculations of tree-level QED processes are presented in detail in the lecture
notes of prof. F. Piccinini (available in the library).

The course basically covers the first eight chapters and App. A of “Quantum Field
Theory” by Mandl and Shaw [26].

The first part of the course is treated in detail in Ch. 2, 3, 4 of the book by Ryder [29].

Two recent textbooks on the topic are the ones by Maggiore [25] (more concise) and
Schwartz [31] (more extended).

The book by Aitchison and Hey [3], Vol. 1, presents similar topics with a pedagogical
and accessible style.

The book by Peskin and Schroeder [28] has become a “classic” but it is more ad-
vanced and more phenomenology-oriented than the previous ones. In any case, the
first five chapters of the book roughly correspond to what is covered in the present
course.

The book by Halzen-Martin [21] is lower-level than the previous ones, but it may be
useful to understand the concepts without diving too deep into the theory.

A classic book, a “bible”, is that by Weinberg [33], difficult but very complete.

A well-documented history of the birth of Quantum Field Theory can be found in
the book “Inward Bound” by A. Pais [27], in particular Ch. 15.






2 |

Relativistic wave equations

Qunatum Field Theory textbooks often skip the discussion of relativistic single-particle
equations and start straight from the language of field theory. The discussion is important
not only historically, but also to understand some features of relativistic quantum theo-
ries. It is also the occasion to introduce some technicalities that are anyway needed in the
following chapters. Apart from the lecture notes of prof. Miglietta, the topics covered in
this chapter are treated in a very concise way in App. A of Mandl-Shaw [26] and in Ch. 3
of Peskin-Schroeder [28]. A more extended treatment can be found in Ch. 2 of Ryder [29].

2.1 The Klein—Gordon equation

The Schrodinger equation is one of the “axioms” of Quantum Mechanics and reads
ihdpp(t,X) = HY(t,X), (2.1)
where we used the notation d; = %
For a free particle of mass m, we have the nonrelativistic relation
=2
p
E=_— 2.2
- (2.2)

We can then obtain the Schrédinger equation by the replacement

E — iho; §— —ihV (2.3)
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leading to

. . H V2
ihopp(t, X) = — 5

Wit 7). (2.4)

An “obvious” guess to go from a nonrelativistic to relativistic description is to start
from the relation

E? = m?c* + ﬁzcz (2.5)
The nonrelativistic case is recovered in the limit ¢ — oo
=2 =2
2 p~ cpo0 o P
Now we use the replacements (2.3)
. m2ct o .
—afcb(t, X) = ( 5 = Vzcz) ¢(t,X)
" 2.7)
2 - . m2c? . '
(& -7)ote = Tete
and we finally obtain the Klein-Gordon equation
<8“8,u + u2> ¢(x)=0 (2.8)

where we made use of relativistic notations and introduced pu = mc/h. The function is
called Klein-Gordon, even though at least six authors (including Schrédinger) indepen-
dently stated it in 1926 [27].

2.1.1 Excursus: relativistic notation

A concise discussion of relativistic notation can be found in Sec. 2.1 of Mandl-Shaw [26].
Lorentz transformations include rotations and boosts in all directions. Recall that the
effect of a Lorentz boost in the x direction can be written as

ct' = y(ct+ B x) (2.9)
x' = 7y(x+ Bct) (2.10)
y =y (2.11)
7 =z (2.12)

wherey =1/4/1—32and 3 = v/c.

A more convenient notation for our purposes is to write the Lorentz boost in matrix

form
ct’ coshe sinhe 0 0 ct
x/ sinhe coshe 0 0 X
_ (2.13)
y 0 0 10|y
z/ 0 0 01 z
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where we introduced the rapidity € = In[y(1+ )] = In /(1 +v/c)/(1 — v/c). Note that
the inverse transformation requires only a sign change of velocity or, equivalently, a sign
change of rapidity.

A Lorentz invariant is

C2t2 o x2 - yz - 22 — Cztlz . x/2 o ylz o Z/Z. (214)

The best way to formally deal with Relativity is to introduce a space of four-vectors
(Minkowski space) with a definition of a scalar product (a metric) that is invariant under
Lorentz transformations. To do this, we need to introduce two types of vectors, connected
by a metric tensor. A (contravariant) four-vector in Minkowski space is denoted as

a* = (a°,al,a?,a3) = (a°,4) (2.15)
The coordinate vector in c.g.s. units would be
xH = (ct,x,Y,2)|cgs. (2.16)

In natural units (see next section) it is simply x* = (¢, x, y, z).
The metric tensor is

1 0 0 O
P = g = 8 —01 _01 8 (2.17)
0 0 0 -1
Note that
g*¢y, = oL (2.18)
Covariant vectors are
Ay = guva’ = (ao, —al, —a?, —a3) = (ao, —i), (2.19)
Scalar products can then be defined as
a-b=a"b, =ab°—7-0b. (2.20)

Lorentz transformations will be denoted by L*,. The effect of a Lorentz transforma-
tion is to modify the vectors in this way

at — a* = LHav. (2.21)
By definition, Lorentz transformations leave scalar products unchanged

atay = aMa, = L*a L, %0y
N (2.22)
= L" Ly = 6y
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Any four-component object that transforms like a* under a Lorentz transformation
is a Lorentz four-vector. Apart from the example of the coordinate vector, we can also
consider, e.g.,

pt = (E/c, px, Py, pz), k= (w/c ky, ky, kz), (2.23)

Important: the four-dimensional “nabla” or “del” operator is defined as

9 (90 0 9 9\ _ (0 <
I = N (8x0'8x1'8x2'8x3) N (c'v)' 224)

Even if it is a covariant vector, the relation with the three-dimensional nabla operator is
different from that of a normal vector. This guarantees that the differential of a scalar
function ¢(x) is a scalar

5p(x) = 9;(t, X)dt + Ve(t,X) - 6% = 9,.¢(x)6xH. (2.25)
A useful operator is the so-called d’Alembertian

2
M9, = 2—5 —V? (2.26)

often denoted by 0, which generalizes the three-dimensional Laplacian operator.

2.1.2 Excursus: natural units

A nice discussion is presented in Sec. 6.1 of Mandl-Shaw [26]. When dealing with Quan-
tum Mechanics and Relativity the fundamental quantities we need are

h~1.05 x 107>* kg m? /s, ¢ ~ 3.00 x 10® m/s. (2.27)
Natural units are defined by the choice
h=c=1. (2.28)

In natural units, all quantities can be expressed in terms of a power of M or, equiva-
lently, of energy. Connecting natural-unit expressions to c.g.s. units! is not difficult, it is
sufficient to multiply by the appropriate combinations of # and c factors.

Iwith c.g.s. we mean rationalized Gaussian units, or Lorentz-Heaviside units, where ¢y = 1. Please
note that several equations, including Maxwell’s equations, may look different in different systems. For
instance, in the c.g.s. system we have

@ E= P, E= -Vo — cot’ ﬁLorentz = T X B (2.29)

a |
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For instance, in c.g.s. the proton weights mp = 1.67 x 107?” kg. In natural units, we

can choose to express it as an energy. Since the units of energy are ] = kg m?/s? we need

to multiply the value by a combination of factors that has dimension m?/s?, i.e., c2.

mp = 1.67 x 107% kg o 1.67 x 107% ¢* kg =150 10710y (2.30)

u.

n.u.

g-s

For subnuclear physics, the preferred unit for energy is GeV. The conversion between
Joules and GeV is

1GeV=10°eV=10" x1.60 x 1072 CV =1.60 x 107 1°7. (2.31)

From this we conclude that

mp = 0.938 GeV (2.32)
n.u.
A second and a meter in c.g.s. units can be expressed in terms of energy in n.u.
1
1s| — 22| —o0952x10%)7  =152x10%Gevl| (2.33)
c.g.S. h n.u. n.u. n.u.
1
1m| — 2 —0317x10%]71  =0.507 x 10 GeV~! (2.34)
C.g.s. hic In.u. n.u. n.u.

This means that in n.u. time and space have the dimensions of the inverse of an energy
(or the inverse of a mass). Note that in natural units the typical size of a nucleonis 1 fm =
107 m ~ 1/(200 MeV).

The electron charge squared in the SI units is equal to 2.56 x 10738 C2. In c.g.s. units
it has the dimensions of kg m3/s2. To convert to c.g.s. units we use the value of the
dielectric constant ¢g = 8.85 x 10712 C2s2/(kg m3). We obtain in the c.g.s. ¢> = 2.89 x
1072° kg m?/s2.

The fine structure constant has no dimensions in c.g.s. units and therefore has no di-
mensions also in natural units. The definition is

2 2
e e 1
— _ — ~ —— 2.35
« 47hc C.g.s. 47 ( )

nu 137

In natural units, the typical size of an atom can be written in terms of Bohr’s radius
rg ~ 0.5 x 1071m = 1/(4 KeV) and the corresponding potential energy is a/rp ~ 30
eV, which is the order of magnitude of the energies involved in atomic phenomena.

As another exercise, we can consider cross sections. In natural units they are given
often in GeV~2. In c.g.s. units they have the dimension of a surface, therefore they should
be given in m? (or more commonly in barn= 10728 m?). The conversion is

o=NGeV?| ~— NGeV*(he)?| =N GeV (1973 x 107'°)* GeV’m?|
= N 0.389 mbarn|
c.g.S.

c.g.s.

(2.36)
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2.1.3 Covariance of the Klein-Gordon equation

We define as “Lorentz invariant” a quantity that does not change under Lorentz trans-
formations, e.g., m, aat, F,F*V... Lorentz invariants can be constructed not only with
four-vectors, but also with spinors, as we shall see later. All Lorentz scalars are Lorentz
invariants®. A scalar quantity (i.e., a quantity expressed by a number) is not necessar-
ily a Lorentz scalar and therefore not necessarily Lorentz invariant: for instance, energy
is a scalar quantity, but is is a component of a four vector and changes under Lorentz
transformations.

We use the term “Lorentz covariance” to indicate that a certain relation has the same
form under Lorentz transformations (i.e., it is the same in all inertial reference frames). In
other words, two observers in two different inertial frames should agree on the validity of
the relation. It would be more meaningful to call it “form invariance.” A relation involv-
ing Lorentz scalars is (manifestly) Lorentz covariant (e.g., m* = p,p"). The same relation
written in terms of components (E? = m? + p?) is covariant, but not manifestly so. The
nonrelativistic relation for energy E = p2/(2m) is not Lorentz covariant (it is covariant
under rotations only).

In the Klein—-Gordon equation, we have m which is clearly a Lorentz invariant, and we
have the operator d,,0", which is also a Lorentz invariant since

M9y — M, = LF,9VL, %9, = 940, (2.37)

For the Klein—-Gordon equation to be Lorentz covariant, we need the function ¢ to be
a “scalar function”, i.e.,

o' (x') = ¢p(x). (2.38)

For instance, a function like f(x) = k,x* is a scalar function: if we apply a Lorentz trans-
formation, the four-vector x* will change into x’* = Lyx", but its change will be compen-
sated by a change of the four-vector k;,. The electrostatic potential V (¢, X) = q/(47|x|) is
not a Lorentz scalar field.

2.1.4 Nonrelativistic limit

We want to study the limit for ¢ — oco. We obviously need to write things in the c.g.s.
system. We first rewrite

b=ty (2.39)

which serves the purpose of isolating the rest energy mc?.

2Pseudoscalars are also invariants, but they change sign under parity
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We need to use

He ) (g )

_ (_m;254e—i"1,§2t r_ imcze_imTcztatd), _ imc2 —z—ta @+ e e fach)
(2.40)
Starting from the Klein—-Gordon equation we can perform the following steps:
07 =, mA?\ _m?
O_(cZ Vit )elhtd)l

- mc? az 2im mz = m2

_ it 9t 2 /

_ % (C_Z_Tat— 7 -V 4 7 )d) (2.41)
2m _jme %

~ - hrznelht(zhat + vV )d)' =0

which corresponds to Schrodinger equation. The solutions of the Schrédinger equation
for a free particle are of the form

w(t’ J—C’) — e—iwkt-i-l‘ﬁf (242)

with wy = hk2/(2m).

2.1.5 Solutions of the Klein-Gordon equation

The starting equation is
(aﬂaﬂ n m2> d(x) =0 (2.43)

We seek a solution of the equation in the form of plane waves, i.e.,
P(x) = P(k)e ™ = p(k)e " = P(w, k)e W+ (2.44)
The four-vector k in the c.g.s. system would be defined as
K= (w/c,k)|cgs. (2.45)

where w is the frequency of the wave (units 1/s) and k is the wave number (units 1/m) .
The four-momentum vector would be

P“ = (E/C, I_j)|c.g.s. = (wh/c, h%”c.g.s. (2.46)

where E is the energy (units kg m?/s?), p is the momentum (units kg m/s). In the natural
units system, however, these two vectors are just the same. Talking about frequency or
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energy of a plane wave is the same, and talking about wave-vector or momentum is the
same too.
Plugging (2.44) into (2.43) we obtain

3ub(x) = 909" 5 )

oxH

— 60 au(_iku e—ik“x”) (2.47)
= —Kky p(k)e "
The Klein-Gordon equation in this case becomes
(k* —m?)p(x) =0 (2.48)

which is solved for k* = m?. When this condition is fulfilled, we say that the particle is
“on mass shell” or simply “on shell.” The on-shell condition implies that

w? = K2 4 m?

- (2.49)
= w=tw, =+\/ k2 +m?2

We can check what this means in c.g.s. units.

(2.50)
E? = P+ mct

which is the correct relativistic expression for the energy we started from. The above
relations are also known as “dispersion relations,” a term coming from wave mechanics.

Let us for a moment focus on the positive energy or positive frequency solutions.
What is the “mass”? From the mathematical point of view, it is just a parameter in the
wave equation. It is however connected to the energy and the momentum of the free wave
in the same way as the mass of a particle. In a sense, this could be taken as a definition of
what the mass is.

2.1.6 Problems with the Klein—-Gordon equation

The result of the energy poses a first problem, namely that there are also solutions with a
negative energy and their energy has no lower limit. This is due essentially to the fact that
we started from a quadratic expression for E, which does not exclude negative-energy
values.

It seems almost as there may exist two identical versions of the Klein-Gordon wave,
with positive and negative energy respectively.



2.1 The Klein—Gordon equation

17

There is another problem with the Klein—-Gordon equation. In Quantum Mechanics
we can define the “probability density” and a “current density” in the following way

o(t,T) = (1, ) (1, 7) 251)
67 =~ (9" (6 DT (, )~ 0l )T (1,7)) (252)

Due to the validity of the Schrodinger equation, the two quantities are connected by the
continuity equation

dp+V-j=0 (2.53)

which means also that the integral of the probability density over all space is constant
(use divergence theorem)

/d3xp(t, X) = const. (2.54)
For the Klein—-Gordon case, we can introduce a four-current

) = oo (98 (0949 (x) — H(x)2 0" (x) ). (255)

Indeed, this four-current satisfies a continuity equation. Using the Klein—-Gordon
equation, we can check that (we drop the argument of the ¢ function for convenience)

dujt =
G = 5 ((0x97)2"0 +970,0"¢
— (0u) 99" — $0,9"0") (2.56)
L (6% 3hg — b3 IHd*
_2m<d)a‘la ¢ d)a“a d))
_ L * 2 4 2 g%\
- L owo- o) <o
If we isolate the density contribution, i.e., the Oth component, we obtain

o(x) = 5 (6 (1) (x) — D)0 (x) ). .57)

If we apply this definition to the solution with a negative w (i.e., e/’ **-¥) we obtain

p(x) = 5 2ied" (V)6(x) = ~ % ()p(x), (2.58)

which is negative and is impossible to interpret as a probability density.
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2.1.7 Coupling to electromagnetic field

In classical mechanics, the coupling of a charge particle to the electromagnetic field can
can be obtained by the so-called “minimal substitution” (or “minimal coupling”), i.e.,

E— E—q®, P—7—qA, (2.59)

where g is the charge of the particle, ® is the scalar potential and A is the vector potential
of the elm field
Analogously, in the case of quantum mechanics, we use the substitution

ihd; — ihd; — q®, —ihV — —ihV — gA, (2.60)

In four-vector notation, the minimal substitution can be written in a remarkably sim-
ple way

du — Dy = du + %A,l (2.61)

where A" = (@, A) is the four-potential of the elm field.

It is possible to compute the solutions of the K-G equation in the presence of an elec-
trostatic field an try to apply this approach to the study of the electron in the hydrogen
atom. In the nonrelativistic limit, we would obtain the same results as for the Schrédinger
equation. However, the relativistic corrections would lead to wrong results.

2.2 The Dirac equation

Dirac is certainly the most influential scientist in the development of QED. Nobel prize
winner in 1933. One of the greatest theorists of the XX century. He gave contributions
to Quantum Mechanics (the bra and ket notation, for instance) and to Mathematics (the
Dirac delta and the theory of distributions). But his most important achievement was the
equation that bears his name, published in 1928 [16] and engraved on his memorial stone
in Westminster Abbey.

One of the problematic points of the Klein-Gordon equation is the fact that it is de-
duced from a relation involving E? and thus contains a second-order time derivative (to-
gether with second-order space derivatives). Dirac tried to look for an equation with a
first-order time (and space) derivatives. He demanded that the solution of this equation
were also solutions of the Klein-Gordon equation, which guarantees also the right dis-
persion relation (i.e., the right relation between energy and momentum, or frequency and
wave number).

We start from the following expression of the Dirac equation

(iy“au - m) W(x) =0 (2.62)

For the moment, we don’t know what the factors y* mean.
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We now multiply the equation to the left by a similar operator in order to get as close
as possible to the Klein-Gordon equation

(iyvav + m) (i)/“au - m) ¥(x) = 0. (2.63)
If the following condition holds

(¥"3y) (¥*3,,) = 240, (2.64)

then indeed we can recover the Klein-Gordon equation. If we write the above condition
explicitly

()/an . ,ylal . )/282 . )/383) ()/an . )/181 . )/282 . )/383) — aOaO . alal . 8282 . 8383

(2.65)
we realize that we need
(Y°)? =1 (Y)? = -1 Yy +99° = 0 etc. (2.66)
In a condensed form, we need
Yy vyt = v v =281 (2.67)

The ys cannot be numbers, i.e., commuting objects, they must be matrices. They are
called Dirac matrices. Since we are talking about matrices, it is more appropriate to write
their anticommutation relation as

YyY+ oyt = vy =28 (2.68)

All the properties of the Dirac matrices descend from (2.68). The Dirac matrices are
said to generate a Clifford algebra. Usually, the Dirac matrices are chosen with the extra
condition (called “Hermiticity condition”)

Y =0 (2.69)
Finally, it is very useful to use the condensed notation
d =v"ay, (2.70)

which allows us to write the Dirac equation as

(ig — m)p(x) = 0. (2.71)
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2.2.1 Dirac matrices

Due to their importance also in practical calculations, we need to spend some time on
studying the properties of Dirac matrices. It is important to keep in mind that Dirac
matrices have one Lorentz index and two Dirac indices. When needed to avoid confusion,
we will explicitly write the Dirac indices with capital letters, i.e.,

Yh (2.72)

but most of the time this indices are dropped, which may be a source of confusion at the
beginning.
Dirac matrices must be traceless

1

Tr[y”] = —ZTry*yHy?] (choosing p # v)
8 1 . (2.73)
= Y] = - T Y = T =0
Due to the fact that (1°)? = 1, its eigenvalues can be only +1, while from (y/)? = —1,
their eigenvalues can be only +i. Traceless matrices with these eigenvalues can only be
even dimensional. But we need at least four independent matrices, so we cannot use
two dimensional matrices (there are only three independent ones plus the identiy). The

minimum dimension for Dirac matrices is thus 4 x 4.

It is useful also to introduce the fifth matrix

vs = iyy'v?y (2.74)
with the property

YsY" = —vHys (2.75)

Due to the anticommutation relations, we can also write

1

Y5 = _Zeuvpcﬂ/“yvypya (2.76)

where we introduced the totally antisymmetric tensor with the convention®

V128 — 41, o123 = —1. (2.77)

The Hermitian conjugates

NI Vit — —41, vl =vs. (2.78)

3This convention is often a source of confusion. Our convention is consistent with Peskin and Schroeder,
see Eq. 3.68 in [28], but not with Mandl-Shaw, see Eq. A.13 in [26].
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Other interesting properties (what is interesting is also to understand how to prove
them and get used to manipulating y matrices)

Ve = %(guw"vv + 8w YY) = g =8 =4, (2.79)
YV Y = yu(28™ — VYY) = 29 — 4 = 207, (2.80)

VPR y v = 48 (2.81)
YY" Yy ye = —2y"vPyY, (2.82)

We shall see that traces of ¥ matrices will be very important in the calculation of Feynman
diagrams. Some useful “trace theorems” are

Ty y?] = 3 (TP + T y#)) = g Trla] = 45, (289
Tr[y*yPyPy?] = 4(g*FgP7 + gghP — g% gh?), (2.84)
Tr[ys] = Tr[y’y 75] Tr[y’ys5y°] = —Tr [Vovom] =0,  (2.85)

Tr[odd num. of y] = Tr[y*y? ... 97ysys] = Tr[ysy*y? ... vvs) (2.86)
= —Trh/ VP Y ysys] =0, (2.87)

Tr[ysy*yP] =0, (2.88)
Tr[ysy*yPyPy7] = —4ie*PP. (2.89)

Another very useful set of relations (they are all different version of the same relation),
which descends quite easily from the anticommutation relations, is

Yy = 2pt — v, (2.90)
kp =2p-k—pk, (2.91)
P = p>. (2.92)

2.2.2 Representations of the Dirac matrices

The properties discussed above are independent of the specific representation of the ma-
trices we choose. However, sometimes specific calculations require that we write down
explicitly the matrix elements.

The so-called standard or Dirac representation is explicitly

10 0 0 0 0 01

osk|01 0 0 (k|0 0 10

Y"=1o0 -1 o[’ V=10 =100|" (2.93)
00 0 -1 1 0 00
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0 00 —i 0 01 0
SRl 0O 0 ¢ O 3sk| 0 0 0 -1
Y=10 i0 0]’ Y=1-100 o0 (2.94)
i 00 0 0 10 0

It is of course possible to check the properties of the y matrices directly with this
representation. The notation can be considerably condensed by using the Pauli matrices

ol = ((1) (1)> , o <(1) Bl> , o° = <(1) _01> . (2.95)

whereby we obtain

¢ Standard or Dirac representation

0 SR 1 0 i SR 0 O'i SR 0 1
Y —(0 —1)’ 7—(_0i 0" 5s=11 o) (2.96)

¢ Chiral representation

R (0 1 cR [ 0 o crR (—1 0
Voz(ﬂ 0), 71:(—01‘ 0)’ Vs (0 1)- (2.97)

This version is in accordance with Peskin-Schroeder. Ryder, for instance, has an
opposite sign for ' and ys.

The chiral representation can be written in an even more compact way introducing
the notation

ot = (1,0'), ot = (1, —0"), (2.98)
so that
u CR 0 ot
Y <5u 0 ) . (2.99)

A different representation can be always obtained by means of a unitary transforma-
tion on the matrices

')/p'|rep.2 = u7“|rep.1uT/ uut = 1. (2.100)

For instance, the unitary transformation that connects the standard representation to
the chiral representation is

U= % G f) - %(1 —)/07/5>. (2.101)
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2.2.3 The Dirac Hamiltonian

From the Dirac equation, we want to obtain an expression similar to Schrodinger equation

with an Hamiltonian operator. We can do this by multiplying the equation to the left by

7/0

(iy*oy —m)p(x) =0

O(iya, — =0
v’ (iv"u M)jl)(x) (2.102)
(i0:1 + Y’y - V — y'm)(x) = 0
iatﬂlp(x) = HDII)(X)
with
Hp = —i&V + Bm, a =% B =" (2.103)
In c.g.s. units
i (x) = [—ihcé’c ¥+ Bmc? | P(x). (2.104)

The Dirac Hamiltonian is an Hermitian operator because & and 3 are Hermitian, on
the basis of Eq. 2.69.%.

2.2.4 Energy of plane-wave solutions

We seek solution of the the form

Ya(x) = falk) e ™% = f4(w, k) et (2.105)

note the presence of a Dirac index A: 14 is now not just a function, but a vector with the
same indices as the Dirac matrices. It is called a Dirac spinor. The Dirac equation is a
collection of four equations, for each component of the Dirac spinor.

Let us now apply the Dirac equation, in the form (2.102) to our trial solution

Wl fa(k)e™™ % = [& -k + Bm] fa(k)e ™. (2.106)

The expression & - k+ Bm corresponds to the Hamiltonian operator in momentum space.
To make the situation clearer, we write the equation in standard representation where

- 0 o (1 0
x = ((_f, 0) , B = <0 _1> . (2.107)
We obtain .
(m—w)l G-k B
( 5.7 _(m+ w)l) falk)=0 (2.108)

4Remember that the Hermitian of dy is —d,
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We choose k in the z direction (k = (0,0, |k|)) and we explicitly obtain the system of
equations

m—w 0 k| 0 f1
0 m-w 0 — I fal Zo, (2.109)
k| 0 —m—w 0 f3
0 — || 0 —m—w) \f1

The eigenvalues equations give us
(m — w)?(m+ w)? 4+ k* + 2k (m?> — w?) = 0
(m? — w?)? 4+ 2k*(m?> — w?) +k* =0

<m2 WP _|_E2)2 _ 0 (2.110)

w = twp = £/ k2 + m?

Note that each of the solutions is twice degenerate (of the four eigenvalues, two are +wy
and two are —wy). Interestingly, Dirac started from a first-order partial equation in the
hope of removing the negative energy states, and he ended up with four possible solu-
tions, two of which are negative. It turns out that this degeneracy is due to the fact that
the Dirac equation describes spin-half particles, which can have spin up or down. The
two spin states have the same energy in the case of a free particle.

Similarly to the Klein—Gordon case: there exist states where the energy is negative
and not bounded from below. Dirac tried to solve this issue in a paper in 1930 [17]. He
hypothesized that the vacuum is in reality filled by a “sea” of infinitely many particles.
If the particles are electrons, due to Pauli exclusion principle they fill the energy levels
up to what can be defined as the zero-point energy and no electron can fall in an energy
state lower than that (this would not be possible for a integer-spin particle). However,
an electron of the sea can be promoted to a higher level of energy, above zero. This at
the same time creates a positive-energy electron and leaves behind a “hole” in the sea.
A hole in the sea produces the same effects as a particle with the same characteristics of
the electron, but opposite charge. This idea led to the prediction of the existence of the
anti-electron, i.e., the positron. At the beginning, Dirac thought that the proton could
represent the antiparticle of the electron (1929). However, it was shown by H. Weyl that
negative-energy solutions must have the same mass as the positive-energy ones (1930).
Moreover, Oppenheimer and Tamm proved that the possibility of annihilation of protons
and electrons would quickly lead to instability of ordinary matter (1930). Therefore, Dirac
predicted the existence of the positron in 1931. The positron was eventually observed
by Anderson in 1932. Heisenberg wrote: "I think that the discovery of antimeatter was
perhaps the biggest jump of all the big jumps in physics in our century.”

In spite of this achievement, the theory of holes has some drawbacks. Here is an in-
complete list of problems: it works only for fermions (implying that no relativistic theory
for bosons could exist); the infinite collections of sea fermions should have an infinite
charge and infinite mass; there could be interactions among sea fermions.
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2.2.5 The Dirac four-current

It is possible to define also in the case of the Dirac equation a conserved four-current

=Py (2.111)

where we defined
P =ypiy? (2.112)

It is possible to derive this “strange” formula in a way that we shall see in Sec. 2.2.11.
It is also possible to check that it has indeed the properties of a four-vector, as we shall
see in one of the next subsections. For the moment, let’s give the formula for granted and
let’s check if its four-divergence is zero and what is the associated conserved quantity.

We first need to write the “conjugate” Dirac equation for 1. We take the Dirac equa-
tion, transpose and conjugate it, insert a y°y° = 1 and multiply to the right by ° (re-
member that y°y? = 1):

id, Y"1 —mip =0
= — i, Py —mypl =0

(2.113)
— 10,y —myTy¥ =0
0,y +mip =0
Often, this equation is written as
=
P(i0" +m) =0
(2.114)

$<i§+m> =0

The arrow simply means that the derivative operator acts on the function to its left. It
should not be confused with a vector. The reason for introducing this notation is just that
the equation looks better.

Let us now check the four-divergence of the current

duj* =y (@'}/“11))
= (0u)v* P + Py () (2.115)
= imynp — imyp = 0

Now, we can observe that the “density” ;" is
p= "=y =YYy =yly (2.116)

We see in this case that the density is positive definite, contrary to the Klein-Gordon case.
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2.2.6 Coupling to electromagnetic field and nonrelativistic limit

As in the case of classical mechanics or the Schrédinger equation, the coupling to the
electromagnetic field can be obtained by the so-called “minimal substitution”, i.e.,

dy — Dy = 0y +iqA, (2.117)

where A* = (@, A) is the four-potential of the elm field. If we want to recover the correct
expression including explicit i and ¢ factors, we need to check that gA* has the dimen-
sions of an energy, ML?/T?, while 9,, as the dimensions of 1/L. Therefore, we have to
divide the second term by fic, which has dimensions MIL3 / T2, i.e.,

9y — Dy = 3y + ;Z—ZAH (c.gs.) (2.118)
The Dirac equation for an electron with g = —e becomes
. ie
{lh (a — %A) — mc} Pp=0 (2.119)

This can be rewritten (multiplying to the left by " and remembering that the 0" = 9;/c

yolihyo%%yoq)—SV-A’thﬁ—mc]lp:o

(2.120)
ihlopp = {—ich& .V + mc’B — e®1 + ed - A’} P
To study the nonrelativistic limit, it is convenient to first pose
'WICZ
Y=e ity (2.121)
so that the equation becomes
ihloyy = [C& - (—ih@ + ;A) —e®1 +mc*(B—1) |y (2.122)

work in standard representation and split the (four-dimensional) Dirac spinor in two
components (each one two-dimensional)

/ %
= . 2.123
v=(?) 2.123)
The splitting could be done also using the projector operators
0 _ 30
pr_1tY p-_1-7 (2.124)

27 2
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Then, we obtain two (two-dimensional) equations

ihl1d;p = cT - (—ih@ + %A)x —eDle

L (2.125)
ihld;x = cd - (—ihV + ¢A )¢ — e@1y — 2mc?1y
Cc

The identity matrices (now in two dimensions) are a bit redundant, but they make it
explicitly clear that each equation is still two-dimensional. We shall drop them in the

following.
ihd; +e®)p = cG - (—ihV + £A ) x
(i ) ( ‘ 2 . (2.126)
(s + e® +2me?)x = & - iV + £A)

The nonrelativistic approximation amounts to neglecting the terms d; + e® compared
to 2mc? in the second equation, leading to

1 - e -
~N—0-(—i - 2.127
X 2mc0 ( iV + CA)(p ( )

In practice, it also means that x < ¢. We then obtain an equation for ¢
(ih0; + e®) p ~ 11z (-iW+9A’) 2 (2.128)
t Y~ m p ¢ .

On the r.h.s. we have an expression of this type (from now on, all expressions are in
Euclidean metric, i.e., the upper or lower position of the indices does not matter)

(G- 4)(5-b) = 0;0/a'b/

(2.129)

We have to be careful when considering the second term because instead of 2 and b we
have operators acting on the ¢. In fact

. . . . . . . . . . 2 . .
ik (—ihd' + eAlJc) (—ihd] + eAl Jc) @ = e (—hzalaf - ihg (AT + AiD)) + i—ZAZAJ) 0
(2.130)

The first and last terms drop because ¢ is antisymmetric. The surviving term is

dAlp = (Ao + Aldp (2.131)
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Therefore, our expression becomes

—ei]-kihg [(aiAf) +AIY Al’af} 0= —eijkihg(aiAj)(p - —ihg(ﬁ x A) o= —ithkcp
(2.132)
In conclusion, our nonrelativistic equation becomes
o ~ | (—in + A 2—e®+if§ G (2.133)
P om c 2mc v '

In practice, we obtain the Schrédinger—Pauli equation with the standard coupling to an
elm field (first part) plus a term that couples the magnetic field to the spin.

Not only: usually a magnetic moment u couples to the magnetic field with B - fi. The
magnetic moment is connected to the angular momentum by

o 17
i=g L (2.134)

Naively, we could assume that the same relation applies to spin S = g&. But in reality,
we have to introduce a g factor

oo, 13
fi=g5 -5 (2.135)

For the Dirac particle (i.e., electrons and in general spin-half particles), inspection of the
Schrodinger-Pauli equation tells us that ¢ = 2. This result was obtained by Pauli out of
phenomenological considerations and Dirac obtained it from theoretial principles.

It is also possible to solve the Dirac equation when a Coulomb potential is present
(@ = Ze/r and A = 0). We should start from Eq. (2.103), replace the time derivative with
dt/c — d¢/c+ %ZTEZ to obtain the Dirac Hamiltonian in a Coulomb potential

/ PR 2 Z€2
Hp = —ihca - V + Bmc” — — (2.136)

The eigenvalues of the Hamiltonian can be obtained (by means of several steps, see, e.g.,
Sec. 3.7 of [25]) and correspond to the energy levels of a hydrogen atom, with the correct
spin-orbit coupling and all relativistic corrections in place (Darwin term, Thomas preces-
sion factor), i.e.,

w3+ [+ 1) - Zea] 2137
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2.2.7 Excursus: rotations and Pauli spinors

Before addressing the general question of Lorentz transformations and Dirac spinors, let
us first remind ourselves some useful issues concerning three-dimensional rotations and
Pauli spinors.

Rotations are orthogonal matrices with determinant 1

RT =R, detR = +1 (2.138)

Matrices with such properties form a group, called the Special Orthogonal group in n
dimensions, SO(n). The group is non-Abelian because the elements of the group do
not commute. The combination of these transformations with space reflections forms
the general orthogonal group, O(n), which encompasses also improper rotations, with
det R = —1. In general, a group is an abstract mathematical construction that is indepen-
dent of its specific representation. For instance, rotation matrices in a three-dimensional
space are a representation of the group SO(3). They act on three-dimensional vectors,
which constitute the basis for that representation. The dimension of the representation
corresponds to the dimension of the base space (in this case 3).°> A (completely) reducible
representation can be written in block-diagonal form and its basis vectors can be split into
subsets that do not mix with each other.

We know very well how to write down a rotation matrix in three dimensions. There
are three of them, let us consider a rotation by an angle 6 about the z axis

cosf —sinB 0 050 1 00 0 -1 0
R =R1;; = [sin0 cos® 0] ~ [0 1 0|+0[1 0
0 0o 1 00 1 0 0 0 (2.139)

= 5;j+0(—0618 + 8575]) = 1 +i0]°,

where in the second step we have already written the infinitesimal form of the rotation
matrix, which is just a small variation of the identity. Since the elements of the group
can be defined by means of parameters that take continuous values (the angle 6 and the
other angles in the other directions), the group is called a Lie group. The operator ] is
defined as the generator of rotations around the z axis. The group is characterized by
three such generators, which fulfill the following commutation relations (the algebra of
the Lie group)

', 7] = i, (2.140)
The commutation relations are the same as for the components of angular momentum. In
fact, angular momentum operators are the generators of rotation. The values of &jk are
called the structure constants. The generators look different in different representations

of the group, but they follow always the same algebra and the structure constants remain
the same.

The dimensions of the representation do not have to correspond to the n index denoting the group.
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A rotation of a finite angle about a direction 7i can be written as
R = ¢t/ (2.141)

and so forth for the other components. The exponential of a matrix is defined by its power
series expansion, i.e.:
1
M _ k
e =) k!M : (2.142)

For instance, in the case of R? we have written an infinitesimal rotation as in Eq. (2.139)
and we can check that we can write a finite rotation as

- 100 ~1 0 g2 (1 0 0 e [0 10
RP=6%" =01 0] +06 0 0 +5 0 -1 0 +Z -1 0 0] +...
00 1 0 0 0 0 0 0 00

= | sinf cosB

0
1
0
cosf —sinf 0
0
0 0 1

(2.143)

We can give a different proof of the above by finding the unitary matrix that diagonalizes
i]3, which is

1 i —i 0
U=\ 1 0/ (2.144)
V2\p o v2
In fact
i1 0 0
uliPyu=10 —i 0 2.145)
0O 0 O
Then
i0 e
3 o] ou—1(iPPu; -1 ¢ 9.9 0 i CQSQ sin@ 0
R°> =¢"" = Ue U "=U[0 e 0|JU "= |sind cosO® 0| (2.146)

Suppose we want to check that non-relativistic quantum mechanics, is invariant under
rotations. For a free particle, for instance, we ought to check that the Schrodinger equation

AV
- 2m

ihopp(t, X) = Y(t, %) (2.147)

does not change under rotations. On the wavefunction, the rotation has the following
effect

W (t ¥ = R¥) = p(t, ©), (2.148)
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i.e., the value of the rotated wavefunction at the rotated position ¥’ is the same as the
value of the original wavefunction at X. The wavefunction in this case is invariant under
rotations. This is naturally the case whenever the function depends on scalar products
between vectors, for instance on k-x.

To be sure about the invariance of the Schrodinger equation, we have finally to check
that

50\ 2 o > >
(R(v)) — VRT.RY = V2 (2.149)

(the time-derivative term is also trivial).

This case is admittedly quite simple. But the situation is not trivial when it comes to
the addition of spin. The Schrédinger—Pauli equation contains an operator B - & and the
wavefuntion is now represented by a two-component Pauli spinor. We would like our
equation to retain its form after rotations, i.e., to be rotation covariant. Since a rotation
changes the vector B, covariance can be guaranteed only if rotations have an effect also
on the spinors. Ideed, in quantum mechanics we learn that a spinor oriented along the z
axis is different from a spinor oriented along the x axis and the two can be connected by
a rotation matrix U in spinor space. A rotation then leads to the following changes

B — RB, Y — Uy, B-dy — U(B-3v). (2.150)
where the rotation in Pauli spinor space can be described by means of a 2 x 2 unitary
matrix (SU(2) group).

Rotational covariance means that

(RB) -6 Uy = U(B-5 1) (2.151)

that is, acting with the rotated operator after rotating the spinor is the same as rotating
the spinor after acting with the operator. The above requirement leads to

— U Y(RB)-¢Uyp=B -3¢ = (RB)- (U s U)p=B-G ¢ (2.152)

which is satisfied if

u-'le'U=Ro (2.153)

Having this result in our hands, we can conclude that the expectation value of the spin
operator transforms as a normal three-dimensional vector under rotations, i.e.,

Yoy = R(yiay) (2.154)

This behavior is far from trivial. Using the notation ¢ makes sense only because of this

property.
Explicitly, Pauli spinor rotations can be written

Y = U = e 1007/2y, (2.155)
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For a rotation about the z axis we can write

u3 — u(lz) — e_l'910.3/2 _ <€_i9/2 12/2> _ <COS§ — lSIHg o 0 o 9)
0 e 0 Cos 5 +18in 5 (2.156)

0 ' 3 1 2
3sin§%1—16%:ﬂ—9[%,%}

For an infinitesimal rotation about the z axis we can check that

0
=1 ~ —io
cos 5 —1

. 0-3 . 0—3 12 21 i . i
(11 n 197) o, (11 - 197) - [5,7 +6(—6162+ 5 5].)] o) = (1+i6)5), 0/ (2157)
This result is in agreement with Eq. (2.153).

In summary, rotational covariance of the Schrédinger-Pauli equation implies specific
behaviors of Pauli spinors under rotations. We will see an analogous discussion in the
case of Dirac spinors.

2.2.8 Excursus: Lorentz transformations

We have already reminded ourselves that Lorentz transformations enjoy the property
of leaving four-dimensional scalar products unchanged. In particular, we have written
Eq. (2.22), which can be rewritten in several equivalent ways

L4 LC = & (2.158)
LML0 =g (2.159)
L*'Lyy = 5% (2.160)
L Le=68, =>1T=L" (2.161)

Yet another equivalent way is

guv =8 LouLov (¢ =L'gL) (2.162)

Due to the above properties, Lorentz transformations must have

detL| =1, Lol > 1. (2.163)

(The second relation follows from Eq. (2.158) with v = 0 and o = 0)

Lorentz transformations form a group, the Lorentz group, denoted as O(1, 3). Trans-
formations with det L = +1 and L) > 1 form a continous subgroup named the restricted
Lorentz group, SO™ (1, 3). Addition of the space inversion and time inversion tranforma-
tions complete the group.

Transformations of the restricted Lorentz group can be written in an infinitesimal
form, which is given by the following equation

3 3
Ly st 4+ Y Y eqgM@Pr, (2.164)

a=0p>a
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The indices & and 3 denote if we are making a boost (one of the two indices must be 0)
or a rotation (both indices must be spatial). For instance, (a¢f3) = (1 2) denotes a rotation
about the z axis.

Any finite Lorentz transformation can be seen as a combination of several succesive
infinitesimal transformations and can be written in an exponential form as (fixing « and
B)

L@Blu, — peM@Py (2.165)

In order for transformation (2.164) to be a Lorentz transformation, we need to check
that, for any o and 3,
8ooLPuL?y = guv
oo L L7y = gpo (8f + eMP 1) (87 + €M7

R Quv + e(g,wMUV + gvapu) (2166
= Quv + €(Myuy + Myy)
This means that the tensor M must be antisymmetric in the p and v indices, i.e.,
M, = —M,,. (2.167)

The “generators” of the infinitesimal transformations can be written down explicitly
as

MBI, — gonsh _ oBHsx (2.168)
M©@B) ., = 5%65 — 585% (2.169)

This expression is in agreement with (2.166). We can also check that the expression is
correct starting from the explicit expressions of some Lorentz transformation. Let’s start
from a rotation about the z axis by an angle e

1 0 0 0 1000 00 0 O
(12) _ | 0 cose —sine 0 €20 0100 00 —-10
L 0 sine cose 0 0010 o1 0 o0 (2170)
0 0 0 1 0001 00 0 O
The last matrix in fact corresponds to
M2k — olug2 _ g2u5] (2.171)

(the only nonzero elements are for 1 = 1 and v = 2 and the value is —1, or for p = 2 and
v = 1 and the value is +1).
We can check also a boost in the x direction®

coshe sinhe 0 O 1 000 01 00

(01) _ sinhe coshe 0 0 €20 0100 1000

L 0 0 10 0010|7000 o0 (2.172)
0 0 01 0001 0000

®Remeber that ¢ in this case represents the rapidity € = In[y(1+ 8)] = In/(1 +v/c)/(1 —v/c).
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The last matrix in fact corresponds to
MODk = oOugl _ olns0 (2.173)

(the only nonzero elements are for p = 0 and v = 1 and the value is 1, or for p = 1 and
v = 0 and the value is +1). The matrix is not antisymmetric, but this is because we have
used it in the form with a contravariant and a covariant index. As soon as we lower the
contravariant index, we obtain an antisymmetric matrix.

We can write down the algebra of the generators of Lorentz transformations

[M(“ﬁ),M(W)] — _gGWM(ﬁ‘S) _ gﬁ5M(fW) + g“5M(I3Y) + gﬁyM(WS). (2.174)

This is what fundamentally defines the Lorentz group. The standard transformations in
four-dimensional space are just one possible representation of this algebra (we could call
it the vector representation). It is possible to find other representations that fulfill this
algebra. Note that we used the term “representation” with two different meanings: when
we speak about a group representation, we mean a set of transformations (acting on some
vector space with certain dimensions) that satisfies the algebra of the group. When we
spoke about the standard or chiral representations of Dirac matrices, we simply meant
two different ways of writing the Dirac matrices, corresponding to two different bases
in the Dirac spinor space. When necessary to avoid confusion, we will speak about a
“standard basis” and a “chiral basis.”

2.2.9 Dirac equation and Lorentz transformations

The Dirac equation reads
(iyHoy —m)P(x) =0 (2.175)

The application of Lorentz transformations leads to

?

(ivtoy, —m)y'(x") = 0. (2.176)
where

XM= LM x, d, = Ly 9, 2.177)

In order for the Dirac equations to be relativistically covariant, the spinor has to trans-
form in the appropriate way under Lorentz transformations. We have to find a matrix in
Dirac space that describes this transformation

W(x') = Ap(x) (2178)
and for which (compare with Eq. (2.152))

A~Hiy"d], — m)Ap(x) = (iv"0, — m)p(x) = 0. (2.179)
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In practice, the above identity is guaranteed if there exist a matrix for which (compare
with Eq. (2.153))

A"WHA = LRy, (2.180)

i.e., the effect of A is to transform the y matrices formally as the components of a four-
vector (justifying a posteriori why we denote them with an index p).

We assume that the infinitesimal form of the matrix we are looking for can be written
as

i 3 3
Ax1— > Z Z €xpa™F (2.181)
a=0 =0

Then, we can write the infinitesimal transformations (we focus for the moment on a

transformation with a specific a« and j3)

A"IHA & (]1 + %ea“ﬁ>)/“<]l — %eo"‘ﬁ> =yH+ %eo"‘ﬁy“ — %e)/”a‘xﬁ

Z. (2.182)
LEyY ~ yH 4 eM@BR yY (2.183)
and the covariance condition (2.180) can be written as
%[o“ﬁ,y“] = MBI v = gty oBiyn (2.184)
The above condition is solved by the following explicit combination
B — %[ya,yﬁ}. (2.185)
Let us check
iaﬁu:_lfxﬁu__lfxulﬁocu
5[0 "] 4[[7,7],7]— 4[ 7,7]+4[ V,V} (2.186)
using
lab,c] = a{b,c} —{c,a}b (2.187)
we obtain
i aB o H] 1rxﬁu 1ocuf3 1[5041 113uv
— | O , — _|_ — + — J——
A B T S T R A S S (2.188)

_ gocuyﬁ _ gﬁuyoc — M(“B)uﬂ/v.

We could check that the 0*? generators respect the same algebra as the M(*#) genera-
tors. They form therefore another representation of the Lorentz group, which we can call
the spinor representation.
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We can write the generators of the A transformations explicitly in chiral basis

ol = é[)/i,yj] R gifk (%k (Sk) , (2.189)
SV %'[ 0,y Li <_ng' 21’)' (2.190)

In standard basis
oil R ijk (cgk (?k) ’ o0 R (é’i ‘(’;) , (2.191)

Writing the Dirac spinors in chiral basis as

(YL
W= ( wR) , (2.192)

from the explicit (block-diagonal) form of the generators we can conclude that Lorentz
transformations act separately on the upper and lower components of the spinor (in chiral
basis). Rotations transform upper and lower components in the same way, while boost act
differently on upper and lower components. The fact that the generators can be written
in block-diagonal form is an indication that the spinor representation we are using is in
fact reducible, and we could wonder if it is possible to find simpler representations. We
will not investigate further this topic, but this leads to the introduction of Weyl spinors
(see, e.g., Sec. 2.3 and 2.7 of Ryder, or Sec. 2.5 and 2.6 of Maggiore).
The explicit form of a finite boost transformation in chiral representation is

. i oi —eo' )2
A = g=3e0” K (6 ) eeﬂﬂ) : (2.193)
In particular, a boost in the z direction can be written as
A03) — ,—5e0® CR e c’/2 ¢ _ (cosh§ —c3sinh § 0
B N 0 e /2) 0 cosh§ +0°sinh§/"
(2.194)

For a generic boost in the 7i direction we can use a vector of boost parameters e7i. The
final result is simple (although the steps to obtain it are not so simple):

A — o hent-o% CR (e‘eﬁ"}/z 0 > _ <cosh§ —ii-Gsinh 5 0 ) .
0 e€:9/2 0 cosh§ 47 - G sinh §
(2.195)
In standard representation

L o € 2. Gsinh €

A — o hen'-ot SR cosh 5 7 -0 sinh 5 (2.196)

o oo S c . .
7.0 sinh 5 cosh 5



2.2 The Dirac equation

37

It is useful to explicitly consider boosts from the rest-frame of a particle, where the
momentum is krg = (m,0,0,0), to a frame where the momentum is k = (E, k!, k?,k3),
with |%| = VE%2 — m?. According to what is more convenient, we can express the boosts
in terms of E and m, or |k| and m. The rapidity (the boost parameter) must be

1. E+ [k
2 E— |k
which means also
cosh &= Efm . Exm inh € = /B2 _ i (2.198)

= S = = )
2 2m \/2m(E + m) 2 2m /2m(E +m)
The boost matrices, for any final momentum k, can be written in standard representa-
tion as [29, p. 52]

1 0 K3 Kl —ik?
ﬁiﬁ’ﬁz E+k7§1 k-
/\(k) S:R E+m 03 . 1' ) E+m E+m — E+m ﬁlﬂ E+m , (2.199)
Voom | B 1 0 2m A\ S 1
k1+1'7;(12 —iK3 0 1 o
E+m E+m

while in chiral representation, they can be written as [28, p. 46] 7

/ _ k&
/\(k) CR E+_m ( E+m 0_0_‘ > ) (2.200)
2m 0 1440

E+m

2.210 Parity transformation

What about the action of parity transformations (i.e., space inversion)? The correspond-
ing matrix is

10 0 0
pH, — 8 _01 _01 8 (2.201)
00 0 —1

As done before with the restricted Lorentz transformations, we have to find the ap-
propriate Dirac transformation that guarantees

AR (ivH9), — m)App(x) = ("9, — m)ih(x). (2.202)
In practice, we need to fulfill the conditions

AYOAp =7, —AFYYAp = (2.203)

7To see the connection with the notation of Peskin—-Schroeder, it is convenient to use relations such as

V(E+IK) + v/ (E = [k]) = v/2(E +m) and \/(E + [k[) — \/(E — [k[) = /2(E — m).
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The solution is
Ap = kY’ (2.204)

with k = +£1,+i. A spinor will change in the following way (leaving the imaginary
solutions aside)

Y = +/%. (2.205)

The two opposite signs correspond to spinors with opposite intrinsic parity.

2.2.11 Spinor bilinear expressions

The transformation matrix we obtained to describe the effect of Lorentz transformations
on spinors have the property
AT =90AT0. (2.206)

The relation holds also for Ap. Note that this property clearly shows that the A transfor-
mation matrices are not unitary, which is also related to the fact that the *# generators
are not Hermitian.

We can explicitly check the above statement for infinitesimal transformations

i f
YOA(cxﬁ)TYO ~ 7/o(ﬂ _ 560043) 7/0

i
="+ 5 GYOG“IBTYO (2.207)
1 i 0 aBf,,0 .
=1+ EGY oYy

=1+ %eo"‘ﬁ ~ A1

In the last step, we used

i i
Yoo Py = — SO [yPT 1190 = — 290 (FTy T — 21y FT)H 0

2 2 .
! Y Ba  _a B (2.208)
5 2(7/ Y Y'Y >

:O"(xﬁ

(7/07/’3*70707/“*70 -~ VOV“TVOVOV“VO) =—

We are now in the position to check the nature of the following bilinear combinations
under Lorentz transformations

Y Lorentz scalar (2.209)
Pysip Lorentz pseudo-scalar (2.210)
Py Lorentz vector (2.211)

Pysy*y Lorentz pseudo-vector (2.212)
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For instance, in the first case
P =PIy — PIATVAY = YTy YPATYIAY = PATIAY = . (2.213)

The above relation works also with Ap.
The pseudoscalar combination works in the same way, since A contains an even num-
ber of Y matrices and therefore commutes with 5

Pysp — PIATY ysAY = Iy ATV ysAY = PATIysAY = Pysy. (2.214)

but for parity transformations there is a difference, since Ap = y( and therefore anticom-
mutes with the y5

— it - —
Pysh = WAL YA = DIV VALY Vs AR = PAL s AP = —Pys. (2215)
Checking the vector combination is relatively easy, once we know (2.180)

Prip — PIATY Y AY = Py AT Y A = AT AY = LTy, (2216)

We are now in the position of justifying why we used exactly this kind of combination to
introduce the concept of a Dirac four-current in Sec. 2.2.5.

2.2.12 Plane-wave solutions

We know that the Dirac equation possesses four plane-wave solutions, two with positive
and two with negative energy. We now want to obtain the explicit expression for these
solutions in the chiral or standard representation.

We first focus on the positive-energy solutions. We can study the solutions in the rest-
frame of the particle, where kgp = (m, 0,0, 0), and then boost to a frame where the particle
has a generic momentum k, using the explicit expression for boosts in Dirac space.

The expression for our positive-energy plane-wave solution is (for the moment we do
not worry about the normalization)

P(x) = u(k)e ™ (2.217)
The Dirac equation implies for the spinor u
(k—m)u=0 (2.218)

In the CM frame this becomes simply

00 0 0
00 0 0

(my® —m)u(0) = 00 —om o |#O)=0. (2.219)
00 0 —2m
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The solutions can be written as

u1(0) 2 vVom 12(0) 2 V2m (2.220)

o O O
O O = O

The specific choice of spinors is arbitrary: in this case we have taken eigenvectors of o2,
but we could have chosen any generic direction. Careful: there are two different common
choices for the normalization of the spinors. Here, we follow the conventions of Peskin-
Schroeder, although other books, e.g., Mandl-Shaw and Ryder, prefer to normalize the
spinor to 1, i.e., they have an extra 1/ V2m in front.

We can redo the calculation in chiral representation, or just apply the unitary transfor-
mation (2.101) to change from one to the other. In any case

11 (0) = 115(0) = (2.221)

0O
~
3
O = O =
0O
~
B
_ O = O

Looking at Eq. (2.199), we realize that boosting a u spinors in standard representation
(not in chiral representation) is the same as applying these transformations

w@) R _EEM o @) E o) kM (2.222)

2m(E +m) ’ /2m(E +m)

With these ingredients, we can then compute the explicit form of a u(%) spinor

E+m 0
- sR 1 0 > sR 1 E+m
ui (k) = \/ﬁ k3 , uz(k) — \/ﬁ kl . lk2 (2223)
Kk + ik? —k3

Note that often the spinor is written as a function of the four-momentum k. However,
due to the on-shell condition k> = m?, in reality the spinor can be seen as depending only
on the three-momentum k.

We can do similar steps for the chiral representation and obtain

E+m—k —k! +ik?

Lk 1 —k! — ik o1 E+m+53
Lll(k) = m E+m—|—k3 ’ MZ(k) - m kl—ikz

k! + ik? E+m—Kk

(2.224)
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The representation above can be useful to discuss the so-called ultrarelativistic limit,
where masses are neglected and thus |k| = E. If we consider a particle with momentum
in the z direction, we obtain

_ o O
IS
N
—~
tay
~—

0
X
§‘
™

(k) & V2E (2.225)

S O = O

0

The above expressions describe the result of boosting with a momentum k in a generic
direction a spinor which has spin oriented along z in its rest frame. We could build other
expressions where the spin is oriented along the direction of momentum.

For the negative-energy solutions, we choose the following strategy [32]. We want
to describe a plane-wave solution of the Dirac equation with k> = m? and k° < 0. If
we choose p = —k, we need a solution with p?> = m? and p° > 0. In practice, instead
of having a negative-energy solution moving with momentum k, we look for a positive-
energy solution moving with momentum —k. Our trial solution is then

P(x) = u(k)e ™ = v(p)etirx (2.226)
The spinor v has to solve the equation
(p+m)o(p) =0 (2.227)

(note the sign change for the mass term).
To solve this equation, we use a trick. We make use of a matrix with the following
properties

CIytC = —#, (2.228)
explicitly, in both our standard and chiral representations C corresponds to
C=—iy? (2.229)
with the properties
c=c'=ch (2.230)
We can check that
o(F) = Cu(p)" (2231)
is indeed a solution of the Dirac equation for the negative-energy states
po(P) = CClpuy"Cu(p)” = C[—pu(p)]" = C[-mu(p)"] = —mo(p).  (2232)

Therefore, to obtain the v spinors that represent a solution of the Dirac equation for
negative-energy states, we simply take the positive-energy solutions and apply the tran-
formation (2.231). This transformation is called charge conjugation because it turns par-
ticles into antiparticles. To uphold this interpretation of the charge conjugation transfor-
mation, we can also note that if 1) solves the Dirac equation with coupling to an elm field,
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Eq. (2.119), then yc = Cy* solves the equation

{i (a + ieA> - m] P =0, (2.233)

i.e., the Dirac equation with coupling to an elm field, but with an opposite charge.
The rest-frame solutions look like

0 0
01(0) £ vam 8 , 2(0) £ vam 2 (2.234)

-1 0

The rest-frame solutions are orthogonal and normalized to 2m, i.e.,
ul (0)u;(0) = 2m &y, vl (0)0;(0) = 2m &, u;(0)v;(0) = 0. (2.235)

We can obtain the solutions for a momentum p by boosting or by applying charge
conjugation to the positive-energy solutions. In any case, the final outcome is

pl - épz 1 p® )
. SR 1 —p o sR 1 pr+ip
= _ , = ) 2.236
01(19) \/m 0 UZ(F’) \/m E+m ( )
E+m 0

Note that boosting a v spinors in standard representation (not in chiral representation)
is the same as acting with

sk (—p+m)

o(p) & 0(0) 5(5) L a(0) LM (2237)

2m(E +m) ’ 2m(E +m)

With these results in our hands, we can check several properties of the spinors. First
of all, we have already shown that combinations #u are Lorentz scalars, therefore we can
compute them in the rest frame and obtain

;(K)u;(K) = m(0)u;(0) = ul (0)y°u;(0) = 2m &, (2.238)
7:(K)v;(K) = 7;(0)0;(0) = 0! (0)¥°0;(0) = —2m &}, (2.239)
u;(k)o;(k) = 0. (2.240)

Note that these combinations, where the Dirac indices are contracted, must give the same
result in any representation.

Next, we can also compute combinations of the type u'u (and check that they are not
scalars, but rather correspond to the zeroth component of a four-vector). Again, we can
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choose any representation to do the computation. For instance, we work in standard
representation and use Eq. (2.222) to apply a boost. We will need the relation

(K4 m)Y° (k + m) = (2k° — Yk ++m) (k + m)

and also
i1,(0) ( + m)us(0) = ,(0) (k%%° + m)us(0) = 2m(E + n1)5s (2.242)

where the last step can be conveniently computed in standard representation. We can
obtain

B ) = o (4, 0)) (s (0)
= sE T O (k- m) (- m)us(0)
= S E T O m Y (o) (@249)
= s E T Oy + s (0)
_ m%oﬁr(o) (K + m)us(0) = 2k%6s.

For the v spinors, we can either check the computation in a similar way, or use charge
conjugation to show that

ol (K)os (k) = ul* (F)CTCus(F)* = (uf (K)us(K))™ = 2k6,s. (2.244)

We can also show that
ul (K)os(—K) = 0} (K)us(—Kk) = 0. (2.245)

More generally, we can obtain the expression for uy*u using the effect of a Lorentz
boost

i, (K)y*us (k) = 7, (0) A~ (k) y*A(k)us (0)
= L“Vﬁr(O)yvus (0) (2246)
1 (0) RE L (0) = 2Kk,

which is a vector as expected. In the last line, we made use of the fact that we can compute
explicitly the expression i, (0)y*u;(0) in the rest frame: the 1 term gives the same result
as Eq. 2.243, the y' terms give 0, corresponding to the components of kgr The result for
vyHv is identical.

It is sometimes useful to know the equations satisfied by the barred versions of the
spinors. We remind ourselves that the standard spinors fulfill

(k—m)u=0, (K+m)v=0. (2.247)
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For the barred spinors we can obtain (it is sufficent to take the barred version of the
previous equations):

Ak —m) =0, T(f+m) = 0. (2.248)

Last but not least, we need to introduce the so-called positive and negative energy
projectors. They are defined as

—

Ahp = ZurA (k)it,p(K), Aup = va 7,5(k). (2.249)

They are Dirac matrices (outer products of two Dirac spinors).
We can check that they are projectors since

(A = T w, (07 (R us (B (F) = 2m Y Y u, (F) 6,610 (K) = 2mAT,  (2.250)
(A7) =Y Y 0, (k)7 (F)os (F)7s(F) = —2m Y Y 0,(F) 6,575 () = 2mA~.  (2.251)

We can check that the projectors are orthogonal and complete
AEpAT =0, Afg+ALp = 2ml gp. (2.252)
Due to Dirac’s equation, we know that

(k—m)AT =0 = AT = A(f+m), (2.253)
(k+m)A~ =0 = A~ = B(f—m). (2.254)
To fulfill Egs. (2.250), (2.251), (2.252), weneed A =1and B = —1.

In conclusion, the result is
AT =Y u, (k)i (k) = f+m, (2.255)

A” ==Y 0, (k)T (k) = —K + m. (2.256)

2.2.13 Spin and helicity [optional]

In our analysis of the Dirac equation, we have identified two degenerate positive-energy
and two negative-energy states. If we confine ourselves to the rest-frame of the particle
(which is possible only for massive particles), we can introduce the Pauli spin operator
(see also Eq. (2.191))

1 i SR 1
Zk = —€i]'k0'1] S:R (Gk 0) (2257)

The last expression is valid also in chiral representation, see Eq. (2.189). Spinors can be
eigenvectors of this operator with eigenvalues +1 and —1. We have seen that the two
states correspond to different energies in the presence of a magnetic field, which leads us
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to the identification of the two states as “spin up” and “spin down.” The operators have
the property

[zi, L] = ieipZy (2.258)

which is what we expect for a spin-1/2 operator.

This discussion is limited to the rest frame of the particle. In spite of the fact that spin
is essentially tied to relativistic invariance, it is nontrivial to build a spin four-vector. In
order to distinguish the two independent states for # and v spinors in any frame, the
most common choice is to introduce the helicity operator of a particle with momentum k,
defined as

helicity = h(k) =k - Z (2.259)

where k denotes the unit vector in the direction of the particle’s momentum. In other

words, helicity corresponds to the projection of “spin” along the direction of motion.
The helicity operators commutes with the Hamiltonian @ - k 4 3m. Let us consider the

spinors in the form of Egs. (2.223) and (2.236) and a momentum k, with k; = k, = 0.

Applying the helicity operator we can explicitly check in standard representation that

) =ui(k), h(kz)up (k) = —up(kz), (2.260)

h(k:)vy (k) = —o1(K2), h(k:)va(kz) = 0(kz). (2.261)

Our choice of spinors 1 and 2 corresponds to helicity eignestates if the momentum of the
particle is in the z direction. It is possible to use spinors with helicity along a generic k.
The only crucial feature is that there are obviously always two degenerate states.

There is still an asymmetry in the labeling of u and v spinors for what concerns the
different sign in the helicity eigenvalue. The final justification will be given in Sec. 3.5.3.

2
2

2.2.14 Feynman interpretation of negative-energy solutions [optional]

Before closing this chapter, let us discuss again the question of negative-energy solutions
(see [3]). Although the formalism of Quantum Field Theory better clarifies the issue, it is
possible to introduce an interpretation of the negative-energy solutions, due to Feynman,
that to a certain extent provides a bridge between single-particle wave equations and
quantum fields.

This interpretation is more easily discussed in the Klein-Gordon case. We have found
that we can have solutions of this form

d)ﬂ: (x) — eiFiwkt+iE-f (2262)

with positive and negative energies. We could say that the negative energy solutions are
equivalent to positive energy solutions propagating backward in time,

—
=

(Pi(x) — efiwk(ft)+ik~x’ (2263)
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but it is not clear if this has any physical meaning. Suppose, however, that we take a
positive-energy solution and take its complex conjugate

d)+* (x) — eiwkt—iﬁ-f’ (2264)

This is equivalent to a positive energy solution, propagating backward in time and with
opposite k. This solution has a physical meaning. The Klein—-Gordon equation coupled to
an elm field is

[(a“ +igAR) (D, +igAL) + mﬂ d(x) = 0. (2.265)

Taking the complex conjugate we obtain
[(aﬂ — igAM) (D, — igA,) + mz] ¢* (x) = 0. (2.266)

Therefore, ¢* describes an antiparticle, i.e., the same as a particle but with charge (—¢).
This observation can be generalized to the effect of negative-energy solutions on any
physical process and leads to the following rule

A negative-energy Klein—-Gordon particle with momentum k* propagating
forward in time is equivalent to a positive-energy Klein—-Gordon antiparticle
with momentum —k* propagating backward in time.

This means that instead of working with negative-energy particles, we can conve-
niently switch to positive-energy antiparticles. Suppose a system absorbs a negative-
energy particle with (positive) charge 4 and momentum k* = (—wy, k), its charge in-
creases, its energy decreases, its momentum increases. This is the same effect as emitting a
positive-energy antiparticle with momentum (wy, —k).

This leads also to a clarification of the problem of the the Klein-Gordon current,
definded in Eq. (2.55). Instead of interpreting it as a “probability current,” let us inter-
pret it as a charge current, multiplying it by the charge of the particle, i.e.,

) = 5L (97 (99 (x) — ()09 (1)) =g 4" (6(). 2267

With this simple change, we can stop worrying about the presence of negative densities,
since we are now talking about charge densities, not probability densities.

Not only. We can also observe that the current generated by negative-energy solutions
with k* = (—awy, E) is equal to the current generated by a particle with p# = —k# =
(wy, —k), but with charge —g, i.e., the current of an antiparticle with positive energy and
momentum —k.

For fermions, the situation is less straightforward because of the presence of spin and
because the current density was positive also for the negative-energy solutions.

Similar to the Klein—-Gordon case, we note that the solutions were of the form

W (x) = u o (k)e kR (2.268)
Y (%) = ug (k) HET (2.269)
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with positive and negative energies. The negative energy solutions are equivalent to
positive energy solutions propagating backward in time

P (x) = uz 4(k)e @ -OHRT, (2.270)

To match this into something with physical meaning, we consider Cy*, which solves the
Dirac equation for a particle with an opposite charge (and opposite spin), i.e., it describes
an antiparticle. Therefore, we consider the function

Cyt* (x) = 010 k)t~ (2.271)

which describes an antiparticle with momentum k and a certain spin in the rest frame.
This is equivalent to a positive-energy solution, propagating backward in time, with mo-
mentum —k, and with opposite spin in the rest frame.

Feynman’s hypothesis can in this case can be phrased as follows

A negative-energy fermion with momentum k* and spin projection s, prop-
agating forward in time is equivalent to a positive-energy anti-fermion with
momentum —k* and spin projection —s, propagating backward in time.

There is only a further subtlety: for fermions, sometimes we must take care of extra minus
signs due to the fact that they must obey antisymmetrization rules. This should become
clear only later in the course. This has an effect on our definition of the current. The
charge current generated by positive energies is

j* = qu(R)y*u(k) = 24 (wk, 75) (2.272)

Adding the extra minus sign due to anticommutation rules, the current generated by
negative energies is

= —go(—R)yHo(—F) = —2¢ <wk, —%) (2.273)

which corresponds to the current of an antiparticle with momentum —k, as for the Klein-
Gordon case.

2.3 Conclusions

In this chapter, we have dealt with relativistic wave equations that try to generalize the

nonrelativistic Schrodinger equation. In the next chapter we will see that the formalism

of field equations is more appropriate to deal with relativistic quantum mechanics.
Typical questions that can come out during the exam:

1. Effects of boosts on Dirac spinors;
2. Prove that 4,1, is a scalar and compute it;
3. Discuss the positive or negative energy plane-wave solutions of the Dirac equation;

4. Compute the positive or negative energy projectors.
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Free quantum fields

3.1 Classical field theory

Apart from the lecture notes of prof. Miglietta, the topics covered in this section are based
on Goldstein [20], Ch. 11, and Mandl-Shaw [26], Ch. 2.

3.1.1 The principle of least action

We remember that the action is defined as the time integral of the Lagrangian

t
5 E/ldtL(q,q;t). (3.1)
to

The action depends on the “path” chosen to go from a state at time f; to another state
at time f1. Here path means a function ¢(t), i.e., the time dependence of the generalized
coordinate q. We can define an action for any of these paths. Technically, we say that the
action is a functional of the path (i.e., it is a function that depends on another function).
We can compute what is the difference in the action for a variation of a given path, keep-
ing the starting and ending points fixed. For instance, if the path is described by some
function q(t), we can take

q'(t) = q(t) +8q(t) with  6q(to) = 6q(t1) = 0. (3.2)

The corresponding change in the action is called a “functional derivative” and is mathe-
matically indicated as 6S[q]/d4(t).
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t
Figure 3.1: Example of two pathslto compute the action

In classical mechanics, the path that the system follows is the one that corresponds to
a stationary action (“least-action principle”). This means that if we try to compute the
action for a different path, obtained by some small variation of the first, we should get
a vanishing variation of the action. In other words, the action for the actual path is a
minimum (or maximum). In mathematical notation this is written as

85q]
—= =0. (3.3)
5q(t)
For our purposes, the functional derivative can be defined as
/ / WA R /
SGLF()] _ . GLFY) +es(x = x)] = GIf ()] 64
5f(x) €0 €

The condition of stationary action leads to (assuming there is no explicit dependence
of the Lagrangian on time)

oL oL oL AL
55_/ dt{aq —l—aqéq} _/ dt{aq —i—a—th(éq)}
oL oL oL
— [us _d ‘/ drd, (255 .
o "{aq faq}+ b *(a ") (-5

fo

In conclusion, to have S = 0 for any variation dg, we need to impose the Euler—Lagrange
equations (or equations of motion):

JL p oL
o 9
Let us make a super-simple example. Suppose we have a free particle with mass m = 2

that moves along the x coordinate from xy = 0 at ty = 0 to x; = b at t;. Our generalized
coordinate corresponds in this case to the standard coordinate 4 = x. The Lagrangian is

L = 4°. (3.7)

= 0. (3.6)

We try two different paths A and B: a straight line and a parabolic line. Their equations
are

qA(f) = —t1, qB(t) = t—zt , (3.8)
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and their derivatives

. b : b
1 tl
We obtain for the respective actions
b* rh b? b h 4 b?
Sa=> [ ar=", Sp—dy [lare=2T 3.10
A t2 Jo ty P t Jo 3H (3.10)

We checked that path A leads to a smaller action than path B. We can compute what is
the path implied by the Euler-Lagrange equations:

oL oL : y

PP 0, dta_q = d(29) = 24. (3.11)
Not surprisingly, the principle of least action tells us that § = 0 (corresponding to the

fact that this system has no acceleration), which integrates to

q(t) = Et (3.12)
t1
if we want to fulfill the initial and final conditions.

The principle of least action can be used as the fundamental postulate to derive all clas-
sical mechanics. Feynman extended the use of the principle as the fundamental starting
point of his formulation of Quantum Mechanics based on the “path-integral formalism.”
This particular formalism will turn out to be useful to study Quantum Field Theory, but

will not be used in this introductory course.

3.1.2 Hamiltonian

Let us briefly review the concept of Hamiltonian. We start by taking the derivative of the
Lagrangian with respect to time

JL JaL , .
dtL = a—thl] + a—thq + atL (313)
If the Lagrangian does not depend explicitly on time (i.e., any time translation leaves it
unchanged), we have

oL =0, (3.14)
and from the equations of motion
oL oL
3 dta—q. (3.15)
In conclusion -

From this result we conclude that the Hamiltonian is conserved. This is one particular ex-
ample of the general result of Nother’s theorem, which we will review more completely
in Sec. 3.1.4. The Hamiltonian is the quantity that is conserved if the Lagrangian is inde-
pendent of time translations and corresponds physically to the total energy of the system.
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i1 ¢i i1

Figure 3.2: Schematic drawing of a discrete system of n particles with equal mass m connected by springs
with length a (and elastic constant k). The variables ¢; denote the displacements (drawn at the bottom)

from the equilibrium position (drawn at the top).

3.1.3 From discrete to continuous systems

We start with considering a system of n particles with equal mass m connected by springs
with length a and elastic constant k that can move only in the longitudinal direction. With
¢; we denote the displacement of the particle from the equilibrium position. The kinetic

energy of each particle can be written as

1
T = Sm(didy)?

The total kinetic energy of the system is obviously
1
I'=gm Y (dipi)?
i
The potential energy of the single particle can be written as

1

<1 — di)*.
The total potential energy is

1 2 1 2 1 2
V= EKZ(d)i—H —¢i) =...+ EK((Pi —¢i1)"+ EK(d)i—H — i)+ ...
i

The force acting on particle i can be derived by F; = —dV /d¢;. We can obtain

F=—«(di — bi1) +k(div1 — ¢i),

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

which corresponds to what we would expect from the balance of the forces of the two

springs acting on particle i.
The Lagrangian of the system is

L=T- :—aZ[ (dei) —Ka(qb”rl d)l)]

e x(*20)]

(3.22)
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We have in mind to go to the continuum limit by taking a — 0 with p (mass per unit
length) and Y (Young modulus) constant.
The Euler-Lagrange equations are

oL oL

=— —di=— =0. (3.23)
aqi aql
Applied to our system, we obtain (pay attention to the fact that the coordinate ¢; occurs
in the term i and (i — 1) of the total Lagrangian)

—d; aaqi g di(2ud;) = —E 2ud;,
e I
_ 2[ ¢1+22 oi ZY(P azd)l 1]

Now we go to the continuum limit. In this case, the generalized coordinates ¢; become a
continuous function of the position x, therefore

d)1+1 d)z )

$i(t) = (t,x), - w(t, ) (3.25)
and
Pir1—¢i  Pi—¢i 1
= 02¢(t, x). (3.26)
The function ¢ are what we call “fields.”
The Euler-Lagrange equation becomes
HOFd(t, x) =Y Op(t, x) = 0. (327)

The discrete system was characterized by a large numbers of equations, depending
only on t. Now we have a single equation, but with partial derivatives. The Lagrangian
becomes

L= /dx 1 (9 p(t, %)% — Y (0x(t, x) /dxﬁ (3.28)

The integrand is called the “Lagrangian density.”

With three spatial dimensions, we would have had to start with three independent
displacements (one longitudinal, two transverse). We could have labeled them with an
index 7, i.e., ¢,i(t). This is often referred to as a polarization index. In the continuum
limit, the set of coordinates becomes a continuous function of the position, i.e.,

¢ri(t) = ¢r(t, X). (3.29)

The Lagrangian in this case becomes

L— / Bx L (3.30)
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where the Lagrangian density can in general depend on ¢,,0,¢;, x, where ¢, denote now
a generic set of fields and x is four-dimensional (the fact that we use a four-dimensional
notation for x does not mean that the theory is relativistic).

We now turn the attention to the action. For a continuous system, it becomes

S= /Q d*x Ly, duchy; x). (3.31)

Here, () denotes a region of space and time and I its boundary.

Note that in natural units the action has no dimensions, d*x has dimensions [M]~*
(see Egs. (2.33) and (2.34)). Therefore the Lagrangian density must have dimensions
[M]*. This is consistent also with the fact that in c.g.s. units the Lagrangian density is
expressed in ] /m3, which means that in n.u. it can be expressed as J*.

The principle of least action in this case can be formulated as follows: §S must be zero
under a transformation of the fields

¢y (x) = ¢r(x) + 5y (x) with 8¢, (x)[.= 0. (3.32)

An extension of the standard calculation for the discrete case leads to the Euler—
Lagrange equations for the fields (we assume that there is no explicit dependence on
x)

55 :/ d4x 5L
Q

=/, d4x{a¢>r‘5“’r ud’r jou(or) }

{2 e} [ ) o
= [, 5“”{84)7 ,A» }+ 4Tk (8 (ucbr) )

S RRLA P ud)r)}

The last step is due to the condition that the variation 6¢, vanishes on the boundary T.
Therefore, the Euler-Lagrange equations (or equations of motion) for the fields are:

oL oL

P — Y| 34
36, M3 O (3:34)

Adding to the Lagrangian density a four-divergence (9, f*) causes no change to the
equations of motions. If such a term is added, the action changes by a surface integral
over the boundary T'. This contribution either does not depend on the fields, or, if it does,
gives no contribution to the variation of the action because d¢, vanishes on the boundary
I". Therefore, any two Lagrangians that differ by a four-divergence are equivalent.
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In case we include also an explicit dependence of the Lagrangian on the coordinates,
already in the second line we have to add a term 9,,(L5x") (see App. 3.A). The variation
of the action should be done so that the variation of the fields and the variation of the
coordinates should vanish at the boundary

o oL ‘.
55_/Qd xéd)r{ad)r #qbr } /d ( #d)r)éd)r—i—ﬁéx“) (3.35)

Similarly to the case of discrete systems, also in field theories we can introduce a con-
cept analogous to the generalized momentum conjugate to the generalized coordinates.
In this case, we speak about a conjugate field defined as

oL
= — . 3.36
"= 30 30
We can define a Hamiltonian density by
H(x) = m(x)Pr(x) — L. (3.37)

A summation over the repeated field indices is implied. The Hamiltonian is the integral
over d>x of the Hamiltonian density.

3.1.4 Symmetry transformations and No6ther’s theorem.

If the Lagrangian density is invariant under (continuous) symmetry transformations, we
can construct conserved quantities using Nother’s theorem.

Let us first focus on the so-called internal symmetries. In this case, we consider a
transformation where the coordinates are kept unchanged, but the fields undergo a trans-
formation of the type

Or(x) — Pr(x) = Pr(x) + 5, (x). (3.38)

For our continuous symmetries, the 6 can be considered proportional to some infinitesi-
mal parameter e. The change in the Lagrangian density due to the above transformation
can be written as

oL oL
OL = —86¢; + ————<5(0,,¢,
36, %t 35y Our)

oL d oL
_ ) 5y + 0, [ —=_5¢, 3.39
B d(dudpr) bt ”(3(8u¢r) qb) &3

oL
G <a<au¢>r> 5"”) '
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In the last step we used the equations of motion.! If the Lagrangian is invariant under
this transformation, i.e., £ = 0, then we can introduce a the four-current

W L opr
d(dudr) €

which is “conserved,” in the sense that its four-divergence is zero. The definition of the
current contains a 1/€, which denotes the parameter of the infinitesimal transformation,
to give a definition of the current that does not depend on the “size” of the transforma-
tion (examples should clarify this point better). As reminded in the previous chapter, a
vanishing four-divergence means that if we consider a three-dimensional volume V with
surface S, the rate of change of the integral of j* in the volume is equal to the flux of |
through the surface. Integrating j° over the full space, we obtain a conserved quantity. In
other words, if we define

(3.40)

Q= [ @) (3.41)

then d;Q = 0.
We now consider also transformations that involve coordinate transformations, i.e.,

By xH = x4 SxM,
{x X xX* 4+ 0x (3.42)

br(x) = $(x') = ¢r(x) + Adr(x).

We can express the total variation of the field as (omitting the field index)
Ap = ¢'(x') = p(x) = (¢/(x') = d(x")) + (d(x) — D(x)) = 6¢ + (9v) 5x"  (3.43)

The term 4¢ is usually referred to as “variation in form” and is not related to the change
of coordinates.
The variation of the Lagrangian becomes now (see the steps in App. 3.A)

oL oL
5£ = E5(br -+ W(S(au¢r) + au(ﬁéx“)

oL d oL

oL

= 8“ (W(Sd)r -+ E(SX”) .

The conclusion is that the conserved current takes the form

, oL
M= (W&pr +L 5x“> /e (3.45)

INote that the transformations we are considering now have nothing to do with the transformations
considered before to obtain the equation of motions. The latter vanish on the boundary.
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Inserting now the total variation of the fields, Eq. (3.43), we obtain

) [ oL v
" = |5y (80— @ue) o)+ Lo e
[ oL oL
= | ==~ AP, — | ==——0yp — L5 ) ox" 3.46
0 (a0 £ )ov e (340
[ 9L oL
= |=—=——AP, — | =—=——=3" — L "V ) bx,
Py S Cer st LI
Let us define
oL
THY — Vb — ML, 3.47
3(0nd) p—g (3.47)
we can rewrite Nother’s current as
. oL .y
M= (WA@— ™ 5xv> /€ (3.48)

Let us now see two important examples of symmetries and their associated Nother’s
current. We start with invariance under translations (in time and space). In this case, the
transformations are

m M — x4 et
xt — x /x/—i—en, (3.49)
dr(x) = ¢ (x") = ¢dr(x) = Ady(x) = 0.
Using these results to build the conserved current we obtain
= =Ty (3.50)

Since the unit vector 7 is arbitrary, we see that the conservation of Nother’s current cor-
responds to

9T = 0. (3.51)

The tensor T is called the energy-momentum tensor. The continuity equations are four
(one for each index v) and correspond in fact to conservation of energy and conservation
of momentum in each spatial direction. The conserved quantities are

PY(f) = / Bx TO (). (3.52)
Let us check some components of the energy-momentum tensor (see Fig. 3.3)

OO_a_L'_ _
T — 8([)¢ L="H. (3.53)

This corresponds to the Hamiltonian density, i.e., the energy density. The associated cur-
rent T' is the “energy current density” and generalizes the concept of the Poynting vector
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energy density ~ momentum density
I

shear stress

720 721 T22 T23 stress tensor

energy momentum pressure
current density current density

Figure 3.3: Components of the energy-momentum tensor. Note that in the literature often the tensor is
defined with inverted p and v indices, therefore also the interpretation of the individual elements changes
accordingly.

of the electromagnetic field. The continuity equation with v = 0 corresponds then to the
conservation of energy P® = H. For v = 1,2,3 we obtain the conservation laws for the
three components of the momentum. The components T% correspond to the “momentum
density” and the components T/' represent “momentum current density.” More appro-
priately they form the so-called “stress tensor.”

The energy-momentum tensor as defined above is usually called the “canonical” energy-
momentum tensor and is in general not symmetric. However, we can always build a
symmetrized version of the tensor, called the Belinfante energy-momentum tensor.? The

point is that if we add a term 9, f**” with fA*¥ = — f#V then this implies no change in
the conservation laws, i.e., if we choose

T/HY = THY 4 9, fAWY (3.54)
it is still true that

9 T =9, T" =0 (3.55)

Invariance under rotations, instead, not surprisingly leads to conservation of angu-
lar momentum, although the definition of what we mean with angular momentum for a
field is nontrivial. The transformation we are dealing with are Lorentz transformations.
In this case, we have to distinguish the type of field we are considering. We define scalar
fields those that do not change under Lorentz transformations. Fermion fields transform
according to what we studied for the solutions of the Dirac equation. Vector fields trans-
form as vectors.

For a scalar field, Lorentz transformations imply [see Eq. (2.164)]

{x“ — x/’*L = xH + e“ﬂM(“ﬁ)“val (356)

br(x) = $1(x") = dr(x).

2This is useful, e.g., in the context of General Relativity, where Einstein’s equations are written in terms
of a symmetric energy-momentum tensor
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Nother’s current, Eq. (3.48), takes the form (6¢ = 0)
R e Y R L (P (3.57)

where we used the explicit form of the Lorentz generators in Eq. (2.169). The ensuing
conserved quantities form the following tensor

b — / Bx MO, (3.58)

This tensor is antisymmetric, therefore we cannot have the same indices « and 3. If we
have two spatial indices (invariance under rotations), e.g., 1 and 2, the conserved quantity
corresponds to the component 3 of the vector product of the position x and the momen-
tum density T%, i.e., to angular momentum in the 3 direction. If we choose a time and
spatial index (invariance under boosts), the conserved quantity turns out to be the posi-
tion of the center-of-mass.

For a fermion field, Lorentz transformations induce a change also on the fields, ac-
cording to Eq. (2.178)

br(x) = (x') = Pr(x) — 3€apo™ y(x).
The corresponding angular momentum tensor becomes
Mued = 9L < —~ iaaﬂ) ¢ — THoxP 4 THB =, (3.60)
) \ 2

For spatial & and j3, the total angular momentum is composed now by two parts: one
related to the “internal” change of the fields upon rotations (absent in scalar fields) and
one related to the rotation of coordinates in the physical space. This second term is identi-
tied with orbital angular momentum, the first is identified with spin. In fact, the operator
o'l is related to the spin operator in the direction k, cf. Egs. (2.189) and (2.191). Angular
momentum and spin are not conserved separately: only total angular momentum is.

3.1.5 Global gauge invariance and charge conservation

Let us consider a particularly simple example of symmetry: suppose we are dealing with
a complex field and the Lagrangian is invariant under a global phase transformation of
the fields, i.e.,

B(x) > ¢'(x) = P (x) = ¢+ i .

(P*(x) N d)*/(x) — e‘i“d)*(x) ~ d)* . i(xd)*
It is clearly an internal symmetry, with no change of the coordinates. The Lagrangian can
be anything built with combinations of ¢*¢. If the Lagrangian is chosen to be real, the
invariance under the above symmetry is guaranteed.
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Let us then check what we find for the conserved current. For an infinitesimal trans-
formation (« — 0, where « represents then the infinitesimal parameter of our transfor-
mation) we have

A = 5¢ ~ ing, AP* = 5¢* ~ —iad*. (3.62)

The conserved current is obtained from Eq. (3.40). The field and its complex conjugate
have to be treated as independent fields, i.e., if they were two fields with different index r

. oL ¢ oL  o¢* ( oL oL *>
T °v = - 3.63
I(ud) i I(ud*) a Z () b I(dud*) b 563
We can identify a conserved quantity
(o053 ofL 9L
0= [ =i [ x50 s ) 369

We note that for real fields, the conserved current would be identically zero. On the other
hand, for complex fields (and whenever the Lagrangian is invariant under the above
transformation) we can always define the above conserved quantity. We call it “charge,”
but is does not necessarily mean electric charge. It could be for instance hypercharge,
baryonic number, leptonic number, flavor... Real fields, on the other hand, are not ap-
propriate to describe fields with conservation of some global charge. For instance, the
electromagnetic field is real and there is no global charge associated to it.

The phase transformation we have taken into consideration here is an example of
Abelian transformation. Two phase transformations of this kind always commute (since
in this case, the phase is just a number). There can be examples also of non-Abelian
global gauge transformations. Consider for instance a field which is composed of two
components ¢ = (¢, ¢p;). We could also introduce the concept of a rotation in this two-
dimensional space, which is formally similar to the rotations of Pauli spinors. Rotations
of this kind are in fact usually called isospin rotations: the rotation would be described
by a 2 x 2 unitary matrix V, with det(V) = +1 if we want them to describe continuous
rotations connected to the identity. Therefore, an isospin rotation can be written as>

¢ = e 10072 — 5p = —if %4;. (3.65)

If our Lagrangian is invariant under this kind of transformation (for instance, if it is just
the sum of two identical Lagrangians, one for ¢, and one for ¢;), the corresponding
Nother’s current is the isospin current (there are three of them, since the axis of rotation
is arbitrary)

oL o
3(0.) 2

30ften the Pauli matrices o are denoted as 7' when they are used to describe isospin rotations, but they
are the same.

= —i ¢. (3.66)
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3.1.6 A classical example: the electromagnetic field

We will treat the quantized EM field later in the chapter, but let us consider for the mo-
ment this important example in the classical case. A good treatment of this topic can be
found in the book by V. Barone [6].

We expect to recover Maxwell’s equations. In the razionalized Gaussian units they
can be written (in vacuum and with ¢ = 1) as

V-E= o, (Max I)
V-B=0, (Max II)
V x E = —9;B, (Max I1I)
V x B = j+0/E, (Max IV)
(3.67)

The first and last equations (Gauss’s theorem and Ampére-Maxwell law) are usually re-
ferred to as inhomogeneous Maxwell’s equations, since they contain terms related to the
electric currents and charges. The second and third (Gauss’s theorem for the magnetic
field and Faraday—-Neumann-Lenz’s equation) are the homogeneous ones.

We have to first of all determine the Lagrangian density of the field. It turns out to be

1
L=~ FwF" = FA, (3.68)

The last term is there only in the presence of a current. Remember that j* = (p, j). The
EM tensor is defined as
FHY = 9tAY — Y AH (3.69)

and is antisymmetric.* The A* are our fields: they are the four components of a vector
field. Remember that A* = (@, A).

We remember that the connection of the EM tensor and of the four-potential to the
electric and magnetic fields is

E'=F9=9'A% - 904" = —ViA" — 9, A (3.70)
¢ITBT = =9d/A' — 9 Al = —VIA + V' Al (3.71)

corresponding to

0 —E' —E? —E3
E' 0 —B3 B?
E2 B> o0 -—B!
E3 —-B2 B' 0

FHY = (3.72)

4Note that there are two alternative definitions of the EM tensor: Mandl-Shaw uses a different sign.
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The validity of the homogeneous Maxwell’s equations are already guaranteed by the
above definitions. In fact, multiplying Eq. (3.71) by ¢; and using the property ¢;x"/" =
25, we obtain

o o o L ok
eifkelirgr — Bk — 2¢iikgi AT — 2Tk Al = 2(v X A> (3.73)
In conclusion, Egs. (3.70) and (3.71) become
E=-Vd -4, (3.74)
B=VxA4, (3.75)

From the previous equations, we can check that

—

.B=0 (Max II)
V x E=—9,B (Max I1I)

which correspond to the homogeneous Maxwell’s equations.
The shortest way to write these two equations is

They are automatically satisfied by the fact that F is antisymmetric. We can introduce the
so-called dual field tensor *F*¥ = —e**P?F,; and further simplify the above equation
d, “F*Y =0. (3.77)

The first two of Maxwell’s equations can be obtained as Euler-Lagrange equations
derived from our Lagrangian. Expanding the Lagrangian we find

1
_ _ LAY _ AV AR _ u

L= 4<auAv dvAy) (44 — v ar) — 1A,
= —%((auAv)aﬂAV — (A" AY — (3, A)AY + (By AN AR) — F A, (378)
- —% (0 A0 A — (34A")3,A,) — A,

To obtain the Euler-Lagrange equations we need

oL

7 M
dA, " (3.79)
oL
= - VAH _ AR AYVY) — _FVH
T (a AR — 9HA ) jazy (3.80)

Note that in the last equation superficially there seems to be a factor 1/2 missing. This is
not an error. Suppose you have an expression a,a” and you take the derivative with re-
spect to a,,. We need to do the calculation explicitly component by component to convince
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ourselves
J P d 00 i 0
a—ao(apa ):w(aa —a'a') = 2a°, (3.81)
d P d 00 i i
a(apa ) :—ﬁ(a a’ —a'a') =24 (3.82)
1
The four-dimensional way to write this is
d J
3, 1) = aT(ng”pao) = 8”7 (8pao +apdy) = 22" (3.83)
u u

The same kind of procedure can be applied to the calculation of

oL 1
T _Zoap,Bo| sV sH Ve sVsi B Vi
@A, 288 (638 0p Ao + (3aAp) 5y 8% — 538% IpAu — (3pAq) 850

(3.84)
_ <8VA“ _ a“AV) — _pm,

In conclusion, the Euler-Lagrange equations for the electromagnetic field (including
an electromagnetic current j*) are

3y F¥H = . (3.85)

This is the shortest possible way to write down Maxwell’s equations (actually, only the
first two). It is a collection of four different equations, one for each index p.

To obtain the first two of Maxwell’s equations, let us consider separately the cases
n =20, iin Eq. (3.85)

o =0,F" = —d'F = V'F" (3.86)
jl=0,F¥ = ;F% + V/FJ (3.87)
which lead to
V-E=p, (Max I)
V x B = j+0E. (Max IV)

We can also compute the Lagrangian and the Hamiltonian in terms of the E and B
tields (let us consider j* = 0)

1 1 Py Py S 1, = o
— = pv — _ —( _ pO0ip0i _ p0ip0i ijpij\ — 2 (F2 _ B2 3.88
L=~ FuF 1 (= PP — PR 4 P = (B2 B) (3.88)

To compute the Hamiltonian, we can compute also the energy-momentum tensor.
However, we need to use a trick, i.e., the fact that we can add a term of the type d,f"*”
with fPHY = — f#PY In this case, we choose

T = TH — 9,(FP*AY)

= FPHQY A, + 9, (EZYAY — FPHY,AY — gHVL (3.89)
— —FPR(,AY —VA,) — g"VL = FPREY, — "L
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(the added term is correctly antisymmetric in the pu indices). Now we can compute the
Hamiltonian density

T/OO — FpOFop_E — —FiOFOi—£ — FOiFOi—£
=E*— _(E*-B*) =_(E*+ B
(BB = (B )

(3.90)

This is the correct form of the energy density of the electromagnetic field (radiation field).
We can also compute the EM field momentum density

T/0i FpOFip — _FIOFij — Filirgr — (E X E)i, (3.91)

which is the expression of the Poynting vector.

In the above discussion we avoided talking about a crucial property of the electromag-
netic field, i.e., gauge invariance. In covariant notation, gauge invariance means that we
can transform our fields (i.e., the four-potential) in this way

At (x) — AM(x) = A*(x) + " f(x) (3.92)

without affecting the physics. The Lagrangian in the absence of currents is unaffected
by this gauge transformation. When currents are present, the Lagrangian changes upon
gauge transformations. However, if the current is conserved, d,j* = 0, the Lagrangian
changes by a four-divergence, which insures that the equations of motions are not changed.
We will discuss gauge invariance more extensively when we will quantize the electro-
magnetic field.

3.2 Field quantization

3.2.1 The harmonic oscillator

It is useful to quickly review some concepts related to the quantized harmonic oscillator,
as it will provide the basic ideas for field quantization.

The Lagrangian is
maw? ,

.2
_ 2. (3.93)

[ = —— _
2 2

In this case, the generalized coordinate is the standard coordinate x. The conjugate mo-
mentum is

_dL _
P=%9x~

The Hamiltonian can be written as

mx (3.94)

2 2
, p mw*
H = —L=——+—x" .
px 5 > X (3.95)
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Quantum mechanics can be obtained by promoting the generalized coordinates and
momenta to operators and imposing the so-called “canonical commutation relations”

[x, p] = ih. (3.96)

To do a relativistic theory, it is more natural to use Heisenberg picture, where the opera-
tors depend also on time. It should be clear that in Heisenberg picture the commutation
relation are equal-time commutation relations.

Generally speaking, the canonical quantization procedure for standard quantum me-
chanics can be described by these two steps: i) promote any function of the generalized
coordinates to operators, ii) replace Poisson’s brackets with commutation rules

U/ 8tes — —% [f.8]- (3.97)

Poisson’s brackets are defined as

_ df dg  df dg
{8 = 1 (oo (3.98)

where the sum runs over all generalized coordinates and momenta. Therefore, for a sys-
tem with several generalized coordinate we obtain

[9i, pj] = ihé;j, [9i,9i] =0, [pi,pj] =0. (3.99)

The analysis of the harmonic oscillator can be done also using ladder operators (cre-
ation and annihilation operators). They can be introduced as

1 1

a= mwx +ip), al = mwx — ip). 3.100
2mhw< P) thw( ) ( )
We can check that .
[a,aT] = —% [x,p] =1. (3.101)
The Hamiltonian can be written as
h 1

H= Tw (a'a+aa’) = hw (aTa + §> (3.102)

where we also see the occurrence of the number operator
N =ala (3.103)

We can use as a Hilbert space for our harmonic oscillator the eigenvectors of the num-
ber operator (the so-called Fock space). We denote them by |n> The following properties
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hold
N|n) = n|n) with n=0,1,2,..., (3.104)
Na'|n) = (n+1)a'|n), Na|n) = (n—1)a|n), (3.105)
n+1) = \/nl_ﬂawn), In—1) = %am, (3.106)
In) = \/%(af)”m. (3.107)
The vacuum state is the one for which
a|0) =0, (0]0) = 1. (3.108)

The eigenvectors of N are also eigenvectors of the Hamiltonian with energy

E, =hw <n + %) : (3.109)
The ladder operators in Heisenberg picture follow the equation of motion
in d‘;(:) = [a(t), H]. (3.110)
with the solution _
a(t) = ae 't (3.111)

If we have a superposition of independent oscillators, each at discrete positions de-
noted by the indices i, j, with different wavevectors k, k’, the commutation relations will
be valid for each oscillator independently

[xi, pj] = ihsij, or |[a, alt,] = Sppr- (3.112)
All other commutators vanish
[k, ap] = [a,t, a,U =0. (3.113)
There can be also extra indices to denote the oscillation modes (polarizations) r, s.
(X1, psj] = ih6,s5i). or [am,al,] = 8 (3.114)

The Hamiltonian in this case can be written as
_ i 1
H= ; ;hwk (arkark + 5) (3.115)

We can introduce the occupation number operators for each oscillation modes (de-
fined by wavevector and polarization)

Ny = al ay (3.116)
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we can define its eigenvectors

0). (3.117)

We may find it uncomfortable to have a zero-point energy. In the case of a single
oscillator it was fiw /2. For n discrete oscillators it becomes nfiw/2. In the continuum case
it becomes infinite. It does not really matter, because what matters are energy differences
between one state an another. In this case, we can simply shift, or define, as zero the
energy of the vacuum, the |0) state. This corresponds to simply dropping the +1/2 in the
Hamiltonian.

The way to formally handle this problem is to introduce the concept of normal order-
ing. Normal ordering consists in writing all the annihilation operators to the right. For
instance

Nlaa'] = a'a, Nlata] = ala. (3.118)

For classical mechanics, the ordering of the operators is irrelevant. The Lagrangian we
started from did not have any specific ordering rule. But since we are working with
non-commuting operators, the order of the operators matter and we have to specify a
prescription about that: we can decide to start from a normal-ordered Lagrangian.

Instead of defining normal ordering as “putting all annihilation operators to the right,”
we can use a more general definition for any operator O

N[O] = O —(0|0O|0), (3.119)

i.e., the operator minus its vacuum expectation value. The latter is not an operator any-
more, but a scalar function. We can include it into the definition of our Lagrangian with-
out causing any difference in the physics. Note that

(0]aa'|0) = (0|aa’|0) — (0|a'a|0) = (0|[a,a']|0) = [a,a'](0]0) = [a,aT]  (3.120)

therefore
N(aa'] = aa’ — (0|aa’|0) = aa" — [a,a'] = a'a, (3.121)

which shows the consistency of the two definitions of normal ordering given above.
The wavefunction of the harmonic oscillator in the n = 1 state can be defined in this
way
W(x) = (x|1) = (x|a'|0). (3.122)

and the wave function of two oscillators in the n = 1 state is
Y(xy,x2) = (x1, x2|a1a£\0>. (3.123)

Since the a operators commute, the function is symmetric.
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3.2.2 The fermionic oscillator

The above discussion is appropriate for oscillators with integer spin (bosonic oscillators).
The occupation number can have any integer value, which means that there can be a
superposition of any number of quanta in each oscillation mode. This cannot be the case
for a semi-integer spin oscillator (fermionic), where the occupation number can only be 1
or 0.

It turns out, somewhat surprisingly, that the treatment of a fermionic oscillator can be
carried out simply by changing the commutation rules into anticommutation rules, i.e.,

{f &g — —%{f,g}- (3.124)
At the level of creation and annihilation operators, this leads to
{ay, a;rk,} = 8Ok fermions. (3.125)
All other anticommutators vanish

{ap, age} = {al,al,} = 0. (3.126)

Also in this case we can introduce a number operator in the same way as for the
bosonic oscillator. The difference is that the eigenvalues of that operator can now be only
1 and 0. We have in fact

= (ah)? =0 (3.127)
N? =alaala=a'(1-ala)a=N=N(N-1)=0 (3.128)

For each oscillation mode, we have only two possible states [0) and |1,) = al |0).
Note that if we have a state formed by two oscillations

[1ulge) = alal,[0) = —al al [0) = —|1g1,). (3.129)

That is, we recover the property that fermion states must be antisymmetric. If r = s and
k = k' we see that the state must be zero, i.e., there cannot be two oscillations with the
same momentum and polarization.
The wavefunction of the fermionic oscillator in the n = 1 state can be defined in this
way
Y(x) = (x|1) = (x|a'|0). (3.130)

and the wave function of two oscillators in the n = 1 state is
Y(x1,x2) = (x1, x2|a1a£‘0>. (3.131)

Since the a operators anticommute, the function is antisymmetric.
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3.2.3 Procedure to quantize fields

To build a theory of quantized fields, we closely follow what was done in the discrete
case. To go from discrete mechanics to field mechanics, we replace the generalized coor-
dinates with time-and-space-dependent fields. Then

* we promote the fields to operators;
e for bosons, we replace Poisson brackets with commutators multiplied by (—i/h);

¢ for fermions, we replace Poisson brackets with anticommutators multiplied by

(=i/n).

Note that for a Poisson bracket involving fields we typically need this kind of relation
(see also Eq. (3.4))

/d3 (8(1)7 ) 715 (%) B d7ts(x") ad)r(x)>
0pi(z) omi(z)  9i(z) 97(2) /|00 _z0 (3132)

- Z/d% 5,:68° (% — 2) 3 (X — 2) = 6,663 (% — ¥).
i

{&r(x), 715(x) }pg =

In practice, apart from some exceptions, the above procedure can also be translated
into the following

* for bosons, we assume the validity of the following equal-time commutation rela-
tions °

[Pr(x), ms(x)] = il 6,56(X — X') [, 9] = [m, 7] =0 fort=1t, (3.133)

¢ for fermions, we assume the validity of the following equal-time anticommutation
relations

{dy(x), m(x)} =ih 658(X —X) {9} ={mn} =0 fort=1+. (3.134)
This procedure is called in different ways: “field quantization,”
tization,” or “second quantization.” This last name is a bit deceiving. There is only one
quantization, but it is applied to field operators. The first steps into the ideas of field
quantization (for a vibrating string) appeared in the so-called Dreiminnerarbeit of Born,
Heisenberg and Jordan in 1926 [11]. The formalism of field quantization for bosonic fields
was devoloped by Dirac [15] and by Jordan and Klein in 1927 [22]. The first discussion
of quantization of fermionic fields was done by Jordan and Wigner in 1928 [23]. Jordan

canonical field quan-

5 At different times the commutation relations are different.
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should be rated as one of the most important pioneer of Quantum Field Theory (in spite
of his political views in favor of Nazism).

The necessity of using anticommutation or commutation rules is assumed at this point
as a postulate. However, it turns out that it is dictated by the so-called spin-statistics the-
orem, first formulated by Pauli in 1940. In essence, the theorems says that if we want a
theory that is Lorentz invariant, has positive energies and positive norms, and respects
causality, we need to quantize bosons with commutation rules and fermions with anti-
commutation rules. We will see some aspects of this requirements in the following.

In terms of ladder operators, the quantization procedure consists in imposing the com-
mutation or anticommutation relations

[ar(E) al ()] = (27m)%2ay8,55(k — k') [a,a] = [a,a'] =0 forbosons,  (3.135)

{a,(k),al ()} = (27)°2ay8,s6(k —K')  {a,a} = {al,al} =0 for fermions. (3.136)

Pay attention because there are different possible conventions concerning the above
commutation relations, corresponding to different definitions of the ladder operators.
Mandl-Shaw and the notes of Miglietta are written with discrete values of k because they
rely on the box quantization and take the continuum limit in the end. The commutation
relations are written then without the prefactor (271)32wy and replacing the Dirac delta
with a Kronecker delta dy. Peskin—Schroeder use a slightly different normalization (the
correspondence is a(k)|p.s = a//2wy)

The reason to introduce the prefactor (271)32wy can be explained in this way. We can
use an integration over d°k and show that

/ Pk sF—F) =1 (3.137)

but the integration measure is not invariant. On the other hand, we can use an integra-
tion measure which is manifestly Lorentz invariant (at least for orthochronous transfor-
mations)®

/ (j:; 27 5(k2 — m2)0(k°)

4 4
= [ (st = m00) = [ 558160 - atloi®)
4 3 0
_ / a k zio (K + wp) + (K — w)] (k) = | %%Mko—ww

(3.138)

:/M‘

It is the choice of this integration measure that makes one prefer to use the above defini-
tion of commutation rules.

8The following property of the Dirac & is necessary: 5(f(x)) = Y, (x — x0)/|f'(x0)|, where xq are the
points for which f(xy) = 0.
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We should also mention that it is possible to find different forms of quantization:
the standard one, where the commutation relations are written at equal times, is called
“instant-form” quantization, but it is possible also to use “light-front” and “point-form”
quantization [18]. The difference is that the commutation relations are written for

x¥ = constant instant form, (3.139)
x? 4+ x3 = constant light-front form, (3.140)
xux* = constant point-form. (3.141)

The explicit form of the commutation relations is different in the three cases.

3.3 The real Klein—-Gordon field

3.3.1 Lagrangian density and equations of motion

The Lagrangian density for this field is

Lxe = %(auq)a“q) . m2¢2). (3.142)

Note that since the dimensions of the Lagrangian density in n.u. are [M]*, the dimen-
sion of the field ¢ must be [M].
To derive the equation of motion we need

oL 5 oL
— = — , = d4¢. 3.143
o~ " TERI R (G149
Just to avoid confusions, let’s check the last result
1 0 1 0
- 0,p°p) = ~=——— (9 P99
23(0,0) (3009°0) 23(0,0) (360 57°050) 6140

—~ %(55 87700+ pth 8 64 ) = 9
The equation of motion turns out to be precisely the Klein-Gordon equation

(aﬂau + m2> ¢ =0. (3.145)
Some remarks about the Lagrangian density [30]

1. The Lagrangian density does not depend explicitly on x, therefore it is invariant
under translations and leads to conservation of energy and momentum;

2. The Lagrangian density is a Lorentz scalar, therefore it is invariant under Lorentz
transformations and leads to conservation of angular momentum and center-of-
mass position;
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3. The Lagrangian density depends on ¢ and d,¢. No higher derivatives can be in-
cluded if we want to end up with a second-order differential equation for the equa-
tion of motion.

4. The Lagrangian density is not uniquely determined, since we can always add a
four-divergence o, F” without changing the action and the equations of motion.

As we already remarked when studying the invariance of the Klein-Gordon equation,
the fields do not have to change under Lorentz transformations. They are called “scalar”
fields. They have no spin: there is no need to introduce spinors, there is no internal degree
of freedom that has to undergo some change due to Lorentz transformations.

In the case of the real Klein-Gordon field, there is no conserved global charge. There-
fore, the real Klein-Gordon field can be appropriate for the description of scalar (spin
zero) chargeless fields. This is the case of, e.g., the Higgs boson.

The conjugate fields are

m(x) = — = (x). (3.146)
The energy-momentum tensor can be written as
T"Y = o"¢pad¥p — gV L. (3.147)

In this case, it is symmetric.
The Hamiltonian density can be written as

H=T0=¢>_ [ = %(4}2 + (V) + m2¢2). (3.148)
The momentum density can be written as

P =T = goip =P =—-¢Vo. (3.149)

3.3.2 Solutions for the Klein—-Gordon field

The general solution will have a form like

d(x) ~ p(k)e (3.150)

with K = wy = 4/ |E|2 + m?. However, we would like now to study all possible k and
we would like to work with reasonably normalized waves. A way to look for the right
normalization is to work in a box with boundary conditions and then let the box dimen-
sions go to infinity. We are not going to repeat the details of the derivation, but the final
outcome is that the functions have to be normalized by a factor 1/v/2V w. The continuum
limit is obtained at the end using the relation

Ly 1 /Ood3k (3.151)
14 ; 2m)3 ) '

=—00
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We will work here with continuous values of k from the start. An important mathe-
matical relation to remember is

VT = 5(7
27r / ye 5(7). (3.152)

The solutions of the Klein-Gordon equation can be written in the form”

3 Ny S
o(x) =T (x)+ ¢ (x) = / % (a(k)eflkx +af (k)elkX>. (3.153)

with k0 = wy = Vm2 + k2.

We can easily check that the above function represents a general solution of the Klein—
Gordon equation. Moreover, the presence of al ensures that the solution is Hermitian
(¢ = ¢T). Note that we are talking about Hermitian instead of simply real and we used
the | instead of the simple conjugation because we are now working with field operators.

We can find the expression for the conjugate fields

) (3.154)

kO:wk

7(3) = 90) = [ e (i) (aBre e —al ()

27)32wy,

We now perform our field quantization and impose the equal-time commutation rela-
tions of Eq. (3.133) (in the following, it is understood that k® = wy and k¥ = wy)

[b(x), 7(

oK
xofx()/ _/ )32wk 27r)32wk/(_lwk')
([ k), a(k")] e *e* — [a(k),al (k)] e~ *relkY (3.155)

+ [af (K),a(K)] elre= KX _ [at (K), at (k)] eikxeik’x’>

X0 — 0/

Not surprisingly, it turns out that we have to assume the validity of the commutation
rules for the creation and annihilation operators, Eq. (3.135). Then

Bk BK . ;
x0=x0 N / (27'()3260k / (27r)32wk/ (—Zwk/)(27'[)

_ Zwké(E _ %/) o ikx pik'x’ _ 2wk5@ _ %/) eikxe—ik’x’>

[d(x), 7(x")]

X
~~

50— 0
_ &’k i —zkx x') ik(x—x")
(27)3 2 te ) 0o

3 - -
s sy

3k -
h 1/ (;17'(];3 ) = is(x - ¥

(3.156)

"This is a general statement from the theory of Partial Differential Equations.
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In the second-last step, we made use of the fact that we can change the integration variable
of the second term from k to —k without any effect.

If neede, one can invert Eq. (3.153) to obtain the creation and annihilation operators

a(k) = /d3x eikxi?tcb(x), (3.157)
at (k) = / Px p(x)i 9 e, (3.158)

where we used the notation
A(x) 9 B(x) = A(x)(8B(x)) — (A(x))B(x). (3.159)

3.3.3 Hamiltonian and momentum of the Klein—-Gordon field

We can compute the Hamiltonian starting from the definition Hamiltonian density in
Eq. (3.148)

H= / BxH = / PBx %(qﬁz + (V) +m2¢?). (3.160)

We have
bx) = ) = [ (i) (aBre = B)| L @ae
Tp(x) = / %(i%) (e — af (Rye'™) . (3.162)

At this point, we can rely on the fact that the Hamiltonian is a constant, therefore we
can conveniently compute it for ¢t = 0. We can check (see, e.g., Eq. 3.26 of Srednicki) that
indeed the full calculation with t # 0 gives the same result.

) a3k d3K’
(o(x)) ‘t:O :/(27r)62wk2wk’

31 131/ e L e o
-/ A (a®)a(®)dFR)T 4l (Byal (B E4E)%
¢

(3.163)

We now perform the d°x integration needed to obtain the Hamiltonian. We make use of
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the usual property (3.152) to obtain &(k + k')

/d3 mab(x }t . /( d3k a3k’ [< k' +aT(E)aT(E/)>5(E+EI)
k

27)3 2wy, Zwk,

+ (a(®)al (®) +al Bra(®) ) o(k — F)]
a3k - - . -
= /—(27r)34w% mz(a(k)a(—k) +al (k)a' (—K)

+a(®R)at (k) + af(%)a(k')).

(3.164)

The other two terms in the Hamiltonian can be calculated in a similar manner. The only
difference is the change of sign of the mixed terms and the presence of the extra factors
—iwy and ik:

3 31/ . o o . L.
[@x(6),y= | (Zﬂ";’;ikkmk/ (~ ) (a®a®) + al (Bl (€)) 50 + 7

— (a®)al () +al (Bya(f))5(F — F)
_ /L(_wz)(a@a(_ﬁ) +al (B)al (—F)
) (2m)P4? k

—a(k)al (k) — aWE)a(E))

(3.165)
a3k d°k’ - o - e o o
3 . / i T /
x| 20 = [ Gz zan CF B (e®al®) +al Fal @) sk + )
. (a(%)aT(E') +aT(E)a(E'))5(E - E’)]
— 2(4(k k 1 T(—Fk
/ e (a(Rya(=F) +a' ()a (=)
+a(B)al (k) + aT(E)a(E)).
(3.166)
In the last step, note that —k - k¥’ = k2 if k = —k’, and —k - k' = —k2 ifk=F.
Putting things together and remembering that w? = k? + m? we obtain
1 A3k s o
= /- T 1
H= / e wy(a(®)al () +al Ra(F)). (3.167)

Up to now, we did not make use of the quantization conditions. The above result for
the Hamiltonian could have been derived also in the context of a classical field theory
(apart from the fact that we treated a as operators and used the 7). But now we make use
of the commutation relations and replace

a(kK)al (k) = al (K)a(k) + (27)32w;8(0) (3.168)
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we then obtain

3 - -
H= [ % wi (o @a(f)) + 5 [ % ws(0). (3.169)

Note that the Hamiltonian (i.e., the energy of the field) is positive definite. Its eigenvalues
must always be positive. Note also that if we would have adopted anticommutation rules
for the a and a' operators, we would have obtained only the last term. This is a part of
the spin-statistics theorem, which tells you that in order to have a sensible result for the
energy, for bosons we need to impose commutation relations on the operators. We shall
see how the situation changes for fermions.

The last term of the Hamiltonian corresponds to the zero-point energy of a (infinite)
system of harmonic oscillators and gives a divergent result, but at this point we can in-
troduce the concept of normal ordering, as we did for the quantum harmonic oscillator.

Note that, in the case of normal ordering of field operators, we have to take into con-
sideration that ¢ components contain annihilation operators and have to go to the right.
We then have (see Eq. 3.18 of Mandl-Shaw)

N[p(x)d(y)] = N[(¢T(x) + ¢ (x)) (¢ () + & (v))]
= N[t (x)¢" () +dT ()0~ (y) + &~ (0)d" (y) + ¢~ (x)d™ (v)]
= ¢ ()T () + O (V)T () + ™ (x)dT(y) + ¢~ (x)d™ (v)
= ¢(x)d(y) — [¢7(x), &~ (y)].

(3.170)

Alternatively, we can use the definition of normal ordering in Eq. (3.119) and check that

(0]o(x)¢(y)|0) = (0]¢™ (x)¢~ (¥)[0)

= (0]¢* () (1)[0) — (0]~ ()™ (x)|0) = [¢* (x), ¢~ ()], (3.171)

leading to

N[o(x)$(y)] = d(x)d(y) — (0]dp(x)(y)[0) = d(x)d(y) — [¢F(x), " (y)], (3172)

which is consistent with our previous calculation.

The analysis with the normal-ordered Lagrangian would be equal to the one we have
done, except that the Hamiltonian would be now

3
(27;’;—3';% wi (ol ®a(®)).

(3.173)
In other words, the effect of introducing normal ordering gives the same results as before,
without any zero-point energy (the action of the Hamiltonian on the vacuum would give

H= %/#@"2% wkN[a(E)aT(E) +aT(E)a(E)} :/
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0). In the following, we will always assume that we should be starting with normal-
ordered Lagrangians.®

In similar ways we can also compute the momentum associated to the field, starting
from Eq. 3.149. Steps analogous to the Hamiltonian lead to

3
P— / (2:)—3"2% E(a' ®a(®)). (3.174)

We can check in different ways the fact that the operators af and a correspond to
creation and annihilation operators. There is no fundamental difference compared to
the single-particle harmonic oscillator. We can identify a “oscillation number” density
operator N o af(k)a(k). We can check that it commutes with the Hamiltonian. We can
express the state of the system in terms of eigenstates of the number operator (Fock space).
The vacuum state is the one for which

a(k)|0) =0, (0[0) = 1. (3.175)
A state with a single oscillation/particle with momentum k is given by
|1,) = af(k)|0). (3.176)

The normalization of the one-particle state is

(1¢]1p) = (0]a(k)a’ (K')|0) = (0|a' (Fyatk10) + (0|[a(k),a’ (K')]|0) = (27)32wis(k — k')
(3.177)
Fock states can be built by acting with creation operators on the vacuum, while coor-

dinate space states are built acting on the vacuum with the full field operator

|x) = ¢(x)]0). (3.178)
The wavefunction of a generic state is defined as
Y(x) = (x|¥). (3.179)

For instance, the wavefunction corresponding to one oscillation of momentum p can be
written as

x) = (0]t (x)]1,) = / (m 32w ((0laf®)|1,)e + (olal BTy )
:/ o 32wk<0| a (§)]0)e™™ (3.180)

— 3 T _ A\p—tkx _ —ipx
/(271)32wk(27r) 2wid(k — pe e

8There may be peculiar situations where the zero-point energy plays a role: if the fields are constrained
inside a finite region of space, e.g., a box, the zero-point energy inside the box is different from the zero-
point energy outside the box. This is because the oscillations inside the box must have well-defined wave-
lengths, while outside the box all wavelengths are admissible. The difference in zero-point energies can
cause a pressure on the box. This is the so-called Casimir effect.
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We can prove that

[H, aT(E)} = wy al (k), [H,a(z)] = —wy a(k), (3.181)
Hal(k)|n) = (n+Dawga' (k) |n),  Hak)|m) = (n— Dy ak)|ng),  (3.182)
Pal(k)|ny) = (n+ Dk al (k) |mt), Pa(k)|ng) = (n— Dk a(k)|ng). (3.183)

3.3.4 Causality

It is instructive to explore also the expression of the commutator between two fields at
different times (dropping the vanishing commutators from the beginning):

: d>k 42K’
[(P(x),(]b(x )] :/(27r)32wk/(27r)32wk/
X ([a(ﬁ),aT(E/)] o ikx ik’ [aT(E),a(E/)} eikxe—ik’x’)

Pk P
- 3.184
/ 27520, / 2752w (3.184)

X ((271)32wk5(z —F) e Y _ 2m)2ws(k — K) eikxe_ik/x'>

— &’k —ik(x—x") ik(x—x")
- / (270)%2a; <e —¢ >

We can make some important observations concerning this expression. It depends
only on the difference x — x/, which is consistent with translational invariance. It is
Lorentz invariant because the integration measure is Lorentz invariant and the rest is
a function of four-dimensional scalar products. If we consider ¢t = t/, the commutator
gives 0, as it should

! 4’k —ik(x—x' ik(x—x'
[¢(x),¢(x)]\t:t/:/(2ﬂ)—32%<e o) _ )|

_ &’k Fo(3—7) _ —iF-(7—7)
- / (271)%2a0; (e —¢ ) -

where we used again the possibility of changing sign to k in the second term due to the
fact that we are integrating over d°k.

This means that the commutator vanishes for any space-like separation (x — x')? < 0,
due to the fact that we can always perform a boost to a frame where t — ' = 0 and
calculate the commutator there (obtainining 0). In other words, fields at two points with
space-like separation commute. Only if the separation is time-like (i.e., inside the light
cone), the fields do not commute.

We could not have obtained this result choosing anticommutation rules instead of
commutation rules, because no negative sign would have appeared from the second term
in Eq. (3.184)

(3.185)
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This result is intimately connected with causality. If causality has to be preserved, a
measurement at x should not influence a measurent at x’ outside the light-cone, i.e., if
(x — x’)?2 < 0. This means that any two operators representing observable quantities
must commute outside the light-cone.

Suppose we wanted to measure the energy density of the field at two different space-
time points: the Hamiltonian operators at x and x’ must commute. To keep the discussion
simple, let us consider only the term m?¢? in the Hamiltonian. For (x — x')? < 0 we
require
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The condition is fulfilled if ¢(x) and ¢(x’) commute, which is what we demonstrated
above.

The full calculation of the commutator gives the so-called Pauli-Jordan causal func-
tion, that we quote without derivation

[(x), ¢(x")] =iD(x —x') (3.187)

where

4 .
= i [ 25 (00 — o)) e (3.188)
_ 1 0V _ g(_+0 2y _ M 2
= —(0(:") —0(=x) ) [5(?) zmh(mw_)},
and where [ is the first-order Bessel function of the first kind. Note that for a massless
particle the commutator is nonzero only on the light cone. For a massive particle it is
nonzero also inside the light cone.

3.4 The complex Klein—-Gordon field

This “type” of field is very similar to the real one. The only difference is that the field
operators do not have to be Hermitian. We need to consider ¢ and ¢! as two independent
fields.

3.4.1 Lagrangian density and equations of motion

The Lagrangian density for this field is

Lxc: = N|2up'o4p — m2e! cp]. (3.189)
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For the equations of motions we need

56 = —m2¢f, il —m?, (3.190)
5 (3:” i HoT, s (aafcp = M. (3.191)
They lead to
(a“au n m2) $=0, (a“a” n m2> of = 0. (3.192)
The conjugate fields are
w() = 57 = 1), A= sz = g, (6199)

The energy-momentum tensor can be written as (normal ordering is understood)
WY — HpT Ve + 9Vl oHp — gHV L. (3.194)

In this case, it is symmetric.
The Hamiltonian density can be written as

H=TC=¢p'p+dlp—L=¢pp+ Vo' - Vo +m?plo. (3.195)
The momentum density can be written as

Pl =TV = paipt + ¢pTolp = P =—¢Vel — V. (3.196)

3.4.2 Solutions for the complex Klein—-Gordon field

The general solutions can be written as

3 - . —
d(x) = ¢ (x) + ¢ (x) = / % (a(k)e*”‘x + bt (k)e ka) (3.197)
o (x) = ¢ (x) + P!~ (x) = / #@"Zwk (b(lz)e’ik" + aT(ié)eikx). (3.198)

with k0 = wy = Vm?2 + k2.

The expression of the conjugate fields

. A3k o Lo

m(x) = $f = /W(_iwk) (b(k)e"k" _ aT(k)elkx> o (3.199)
3 o o

g / 2ﬂd3k2 o (i) (a(k)e—zkx _bT(k)elkx> o (3.200)




3.4 The complex Klein—-Gordon field

81

There are two canonical commutation relations (all others are zero)
[p(x), n(x)]|,_, =i6(¥— %), (@7 (x), 7l (x)]|,_, =i 6(— 7). (3.201)
They correspond to two commutation relations (all others are zero)
[a(k),a' ()] = 2n)2wys(k —K),  [b(k),bI(K)] = 2n)2w8(k —K).  (3.202)

Therefore, there are two types of creation and annihilation operators, the 4 and b ones.
There are two number operators and a generic state can have a certain number of exci-

tations of type a and b, obtained from the vacuum state by the application of creation
operators.

3.4.3 Hamiltonian, momentum, and charge of the complex Klein-Gordon

field

The Hamiltonian can be obtained in a way similar to the real case. Let us look in detail at
one of the terms

d°k d3k' : 7 - a7
¢T(X)¢(x)|t20 - / (27T)62a)k 2wy <b(k/) o * aT(k/)e * x) ( (k) o + bT (k) >
&k d*K N (R E Pt (T —i(FAF) 7
_ . T T (7 ,—i(k+k")-X
(27 62wk Zwk/ (b Kjak)e +al(k)b1(K)e
o .

(3.203)

We now perform the d°x integration needed to obtain the Hamiltonian:

271)3 2wy 2wy

+ (b®W R) +a ®a(®) ) (K~ F)]
d®k - - - -
-/ i (b(R)a(—F) + al (K)b! (—K)

+p(R)bt(F) + aT(E)a(E)).

/d3x m2¢T(x)¢(x)|t—0:/( Tk [( (k)a (k) +“T(%)5T(E'))5(E+E’)
k

(3.204)

As in the real case, we can compute also the other terms of the Hamiltonian. Without
repeating all the steps, the outcome of the calculation gives in the end, after imposing
normal ordering

3 - - - -
H= / % wy (o (F)a(k) + b (B)b(F)). (3.205)
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The Hamiltonian is positive-definite, but receives two different contributions. To have a
better understanding of what these two oscillation modes represent, let’s look at Nother’s
current associated to the global gauge transformation discussed in Sec. 3.1.5. The La-
grangian density we started from is indeed invariant under this kind of transformation.
Therefore, we can identify a conserved charge as defined in Eq. (3.64) (remember that
there is an arbitrariness in the normalization):

Q= iq/d?’x(%w - %d)) = iq/d%c(nwﬂ - nd)). (3.206)

As for the Hamiltonian, we can compute the “charge” at t = 0. Using the explicit de-
compositions of the fields and their conjugate, the calculation runs in a way similar to the
Hamiltonian. We obtain

—

3 L .
0=q/ (27;’;—3"2% (al (Bya(k) — b (B)b(R) ). (3.207)

where we already applied normal ordering. We observe that the two types of oscillations
give opposite contributions to the total charge. They can be interpreted, therefore, as
particles (a operators) and antiparticles (b operators). The complex Klein-Gordon field
can be used to describe fields/particles with spin 0 and with a charge of some type, for
instance 77" and 71"

Note that the “probability density” we discussed in the context of the single-particle
Klein—-Gordon equation was exactly the same as the present charge density for the fields.
It was impossible to interpret it as a probability density due to the negative contributions.
In the context of field theories, it is straightforward to interpret it as a charge density, not
as a probability density.

3.5 The Dirac field

This topic is treated in, e.g., Ch. 4 of Mandl-Shaw, Sec. 4.3 of Ryder, Sec. 7.2 of Aitchison-
Hey, Sec. 3.5 of Peskin-Schroeder.

3.5.1 Lagrangian density and equations of motion

The starting point is the following Lagrangian density. As done before, we include normal
ordering, although it becomes relevant only upon quantization.

Lose = N|(ip —m) ). (3.208)

Note that since the dimensions of the Lagrangian density in n.u. are [M]*, the dimension
of the field 1 must be [M]>/2.
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To obtain the equations of motion we need

oL — oL .
EITE = —my, ﬁ = (ig —m)ip, (3.209)
oL — oL
=iy, — = 0. 3.210
) " 00) o
They lead to the Dirac equations (remember that E? = 9, PpyH)
@(i? +m) =0, (i —m)y = 0. (3.211)
The conjugate fields are
oL oL
n(x) = = =ipl(x), 7(x) = = =0. 3.212
()= 57 =) OR= 3212

It is interesting to note that the field conjugate to 1) vanishes. However, note also that
the field conjugate to 1 is proportional to 1. This is an indication that 1 and 1 are not
dynamically independent fields and we should worry only about one of them.

It is possible to do the analysis in a symmetric way, just starting from a different ver-
sion of the Lagrangian density (normal-ordering is understood)
— [l — i 4 — /1 — (14
L= (59 -mw=9 (59579 —m)w—w(ia—m)w.—w(ia)w .,
o La—m)w = Loy wyr) + (L) w = B(id — m)p — Lo, (Pt
= (59— m ) — 0.y w) + (59 ) = (i —m)p — S0Py ).

The two versions of the Lagrangian differ only by a four divergence, with no physical

consequences. The different Lagrangians lead to different definitions of the conjugate
tields

i _ i
m(x) = EII)T(X), m(x) = —EYOIP(JC), (3.214)
and different forms of the Poisson brackets

{$(x), m(x") } pp = 28° (¥ — ¥ (3.215)

The factor 2 comes from the fact that there is a contribution to the Poisson bracket from
the term (9vy/97) (d7r/9Y), since the fields and their conjugates are not independent. The
anticommutation relations applied to the creation and annihilation operators turn out to
be unchanged. We shall not pursue this direction, we will use the first version of the
Lagrangian and consider only the anticommutation relations between 1 and 7.

The energy-momentum tensor can be written as (normal ordering is understood)

THY = iy — gV (id —m )P = Piy*ay. (3.216)
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The last step is due to the validity of the equations of motion. Note that the tensor is not
symmetric in this case.

The Hamiltonian density can be written as

H = TOO — El')/oaoll)

= 3.217
=9I (=7 V+m/)v =y Hpy o217

where in the second line we used the Dirac equation and we used the Dirac Hamiltonian
of Eq. (2.103).

The momentum density can be written as

Pl =T% = yligiy. (3.218)

3.5.2 Solutions for the Dirac field

In the case of the Dirac field, the solutions can be written in general as (A is a Dirac index,
s is a polarization index)

3
VA =50 a0 = ¥ [ oo

T (s (Ryusa(Bre™™ + dl (Fyosa ()e™),
s=1,2

(3.219)

Pa(x) =Pu(x) +ha(x) = ¥ / L(ﬁls(%)ﬁm(%)e_ikx+CI(E)ﬁsA(E)eikx>-

T (271)3 2wy
(3.220)

with k% = wy = Vm?+k? and the spinors u and v are the objects we studied in the
context of the single-particle Dirac equation. For sake of brevity, let us drop the arrow
on the three-vectors in the arguments of the spinors and the creation and annihilation
operators.

The conjugate field (as mentioned before, we consider only the field conjugate to 1) is

w0 =il =i ¥ | L(ds(k)viA(k)eik"+ci(k)ulA(k)eik">. (3.221)

s=1,2 (27‘[)32wk

Since they represent spin-half particles, i.e., fermions, we adopt the anticommutation
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relations. Let us calculate (see Ryder, Eq. 4.50)°

{¥a(x), m(x) }\ = {a(x), iwh(x)}]
a3k’
- 1;/ (2n 32wk (27)2wy

(”“‘( Yulg (k) {er(k), cl (k) } e~ ket
+ Z)rA(k)v (k’) {dT(k),ds(k/)} eikx%’k’x’)

t=t/

=t

d3k’ 5 L
= lrz;,/ 32wk 277)32601(' (271’) Zwk5rs5(k —k )

% (e a(R)isc (K yRp e MY o, (K)asc (K )y2g oY)

t=t'

— - o

_ &’k 0 k(-7 0 —iF(7—7)
= l/m((k+m)AcYCBe + (K—m)acycp e )

- =

. a3k
= l/ (27)32w; ((ko O — Ky +m) 40+ (Y + Ky — m)Ac>7/CB e (=7)

3 To(v_
= i/%ﬂfw e %) — 1,45 8(X - 7). (3.222)

In the third-to-last step, we changed the integration variable of the second term, from k
to —k. This is the reason of the change of sign of the k'y/ term (as usual, it is understood
that k% = wy, for the free field).

Note that up to this point there is no compelling reason to choose anticommutators
instead of commutators. We could have obtained similar results even with the choice of
commutation rules. However, it would have been necessary to switch d with d' in the
expansion of Eq. (3.219).

3.5.3 Hamiltonian, momentum, charge, and spin of the Dirac field

For the computation of the Hamiltonian we need

3 . o ) . o
b= L / (275)—3’;% (—ia) (e (Buaa (B — dl Boaa(Be™).  (3223)

We can compute the Hamiltonian and momentum of the Dirac field (we doitatt =0,

%In the first step, we avoid writing out the anticommutators that are already known to vanish.
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we drop Dirac indices)

H= [ dxipl (09

_ g/(p zndzgfkk;wk/ k(dg(%)yi (E)e—ikx + Cl (%)Ml (E)eikx>
(@@ 1)
31 437/ . ) ) o
_Z/Zjéigwwd<(”““ {(Fyuy (F) — LByl ()l (Ryou (R) ) 5k + )

+ (el (Fyew (Rl (s (F) — Ryl (Rl (o () ) 55— F)
° T 7 7 - - =
N Z/ ﬁ % (ds(R)es (K)ol Ry (=F) — cl (B)dl, (~F)ul (Byos(—F)

—Z/bﬁmuw@ﬂmu— (Rl (E). (3220

The result for the Dirac field can be compared with that of the complex Klein—-Gordon
field, where we had the combination a'(k)a(k) + b(k)b' (k). At this point, we make use of
anticommutation rules on the ladder operators

ds(R)dl (k) = —d (F)ds (k) + (271)32a;5(0). (3.225)

As before, we can either replace the operators as above and subtract an (infinite) constant
energy, or we can specify from the beginning that we are considering operators in normal
ordering. For fermionic fields, however, normal ordering is defined with an extra minus
sign due to the anticommutation rules, i.e.,

N[dd'] = —d'd (3.226)
This is consistent with the definition of normal ordering given in Eq. (3.119) since
(0]dd"|0) = (0|dd|0) + (0]d'd|0) = (0|{d,d'}|0) = {d,d"}(0]0) = {d,d'} (3.227)

therefore
N[dd'] = dd" — (0|dd"|0) = dd" — {d,d"} = —d'd. (3.228)

The difference compared to the bosonic field is essential. In fact, the Hamiltonian with
normal ordering turns out to be

H= / &Px Njipt (x) Z / 27T32wk k(CI(E)cs(%)+di(%)ds(ﬁ)). (3.229)
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We can appreciate once again that the Hamiltonian is positive-definite. Note that if we
decided to use commutation rules instead of anticommutation rules, this would have led
us to a Hamiltonian not bound from below. This is another example of the validity of the
spin-statistics theorem.

As for the bosonic fields, we can check what is the effect of normal-ordering on two
fermionic fields (writing the Dirac indices explicitly)

N{pa(x)p(y)] = N[k )E (v) + 0k ()5 (v) + P ()E (y) + ¥, ()5 (v)]
= YL ()L (y) — Y (VY] (%) + ¥, () g (v) + b4 (x) g (v)
(x)

= Ya(¥)Yp(y) — {¥i(x), ¥g(y)}.
(3.230)

This is again consistent (minus sign included) with the definition in Eq. (3.119).

As before, we can study the behavior of the Lagrangian density under a global gauge
transformation. It is easy to see that it is indeed invariant under this kind of transfor-
mation. The calculation of the charge goes in much the same way as for the complex
Klein—Gordon field. The Nother current is

oL oL ~— _
= g - ~ = H 231
] Zq(a(aplp)"’ 555“ !)1I)> gy (3.231)

which is the well-known current density we introduced while studying the Dirac equa-
tion.
The resulting conserved charge is

3 - - - —
Q=4q) / % (Ci(k)cs (k) — di(k)ds(k)). (3.232)

As before, we see that there are two contributions, from particles and antiparticles (each
one has two contributions from the different spin states). Note that, at variance with the
result obtained while studying the Dirac equation, the conserved charge is not positive
definite. This is due to the fact that we have now introduced anticommutation rules.

Finally, let us consider the projection of the spin operator along the direction of the
momentum, what we have called the helicity operator in Sec. 2.2.13. For the Dirac field
we have, using Egs. (2.260) and (2.261),

— 3 — — — — — — — —
= [ i@ = [ (e @ ) = hBrea® +al B () — i (Braa(B)).
(3.233)

from which we see that the particle and antiparticle components with spin label 1 give a
positive contribution to helicity, while the components with spin label 2 give a negative
contribution. This justifies the asymmetry between the treatment of u and v spinors in
Secs. 2.2.12 and 2.2.13.
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3.5.4 Causality

An interesting discussion of this topic is done in Peskin—-Schroeder, Sec. 3.5, where they
start consider the possibility of postulating commutation rules instead of anticommuta-
tion rules for fermionic fields. With commutation rules, the Hamiltonian would receive
negative contributions from the d'd operators. To avoid the problem, we could argue
that these negative energy contributions are for some reason forbidden, inaccessible. In
this case, however, we would run into problems with causality, because negative energy
states play an essential role in restoring causality.

Here, we limit ourselves to check if causality is preserved when anticommutation
rules are imposed. As we observed for the Klein—-Gordon field, a measurement at x should
not influence a measurent at x’ outside the light-cone, i.e., if (x — x')?> < 0. This still
means that any two operators representing observable quantities must commute outside
the light-cone. For simplicity, let us consider the measurement of the energy density and
let us consider the term m11 in the Hamiltonian. For (x — x’)? < 0 we require

[Ba(0)wa(x), p (< )p(x)]
= () (X () (') — P ()b ()P ()b (x) = O

(3.234)

Interestingly, this condition is fulfilled if all fields operators either commute or anticom-
mute (because the operator is composed of two such fields, so we have to switch the op-
erators twice). Obviously, in the fermionic case we are interested in the anticommutation
rules. Through steps similar to Eq. (3.222), we can check that

— Bk B
(a0 ()} = rz;’/ (27)32wy / (27)3 2wy
X (A (k) (K') e (), el (k') etk
+ 0, (K) 2 (k') {d] (k), ds (K )} ) (3.235)

Ak —ik(x—x' ik(x—x'
:/m<(k+m)AB€ KOx) — (—f+m) gp ))

. 4k —ik(x—x' ik(x—x'
:(ZaX+m)AB/(27r)—32wk<e ( )—e ( ))

Apart from the Dirac structure with the derivative at the beginning, the second part
corresponds to the commutator between two scalar fields analyzed in Eq. (3.184): the
same considerations applying there hold here and allow us to say that the anticommu-
tator vanishes outside the light-cone, thus preserving causality also in the fermion-field
case.
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3.6 The electromagnetic field

Historically, the quantization of the electromagnetic field and its effect on black-body
radiation was the phenomenon that marked the beginning of Quantum Mechanics. The
formalization of field quantization for the electromagnetic field came only in 1929, with
works by Heisenberg and Pauli. It was the first field to be quantized, even before the
quantization of the Dirac or Klein—-Gordon fields. However, due to the complications
added by gauge invariance, we treat this case as the last one.

3.6.1 Lagrangian density and equations of motion

The electromagnetic field is massless and has spin-1. This kind of field has only two in-
dependent components, but is described by a four-vector A*. There are two alternatives,
depending on how we choose to fix the gauge conditions: we can eliminate two of the
components from the beginning, but we loose manifest covariance; or we can keep four
components, of which two should however have no effect on the physics.

We have already seen how it is possible to define the Lagrangian density that leads to
Maxwell’s equations, which was

1
L=~ FwF" = FA, (3.236)

The fields A* must have dimension [M], in order for the Lagrangian density to have
dimensions [M]*..
The theory must be invariant under gauge transformations

AR(x) — AW (x) = AR(x) + “f(x). (3.237)

The Lagrangian density is not invariant under this transformation, but the difference is
just a four-divergence
L— L'=L—-0,(j"f(x)) (3.238)

(if we assume that for an electric current the continuity equation holds, d,,j* = 0).

Note that a Lagrangian with a mass term of the type m?>A*A,, would not be invariant
under gauge transformations: gauge symmetry requires our field to be massless.

Note that gauge invariance does not lead to any new conservation law, because it is
not an additional symmetry that the Lagrangian fulfills, but rather it is a constraint that
we have to impose on the Lagrangian from the beginning because we know that physical
results should not depend on the gauge. This extra constraint originates from the fact
that we prefer to work with the four-potential A#, but in reality we are introducing extra,
nonphysical degrees of freedom (often called auxiliary fields).

Our starting Lagrangian, however, is not ideal for field quantization. This is due to
the fact that the field conjugate to A? vanishes

0 oL

_ _ 00 __
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At this point, we make use of the freedom to choose the gauge. There are several
possibilities, but the most important ones are

V-A=0 Coulomb gauge, (3.240)
MHA, =0 Lorenz gauge, (3.241)
ntA, =0 temporal, light-cone, or axial gauge. (3.242)

Note that the Lorenz condition above does not fix the gauge completely. Performing
a gauge transformation with a function f(x) for which

9,04 f(x) =0, (3.243)

we still obtain a field that satisfies the Lorenz gauge condition. The Lorenz gauge con-
dition identifies a class of gauges. Effectively, the Lorenz gauge reduces the number of
independent components of A* from four to three. But we can use the extra gauge free-
dom to further reduce the number of independent components to two. Consider the
example of a free field with no charges and currents. If we further choose a function f(x)
for which

f(x) = - (3.244)

the resulting A component of the field vanishes, while it must be that V - A = 0. There-
fore, we fall in the case of the Coulomb gauge.10

The Coulomb condition reduces the independent components of the fields to two
(which is the case of the physical electromagnetic field). The condition is only one, so
it would appear that there were still three independent components of the field. How-
ever it turns out that the equation of motions (Maxwell’s equations) allow to further fix
the scalar potential AY = @. In case of the absence of charges, @ can be fixed to 0. In case
of the presence of charges, @ is anyway fixed by the distribution of charges.

The advantage of the Coulomb gauge is that the A field does not appear as a degree of
freedom, therefore we do not have to worry about the absence of a conjugate field and we
can do our quantization in a way similar to before (but with some important differences).
The Coulomb gauge is, however, non-covariant. For instance, A changes from frame
to frame, therefore it may be cumbersome to deal with Lorentz invariance. The Lorenz
gauge is appealing because it is explicitly Lorentz covariant, but it contains non-physical
degrees of freedom.

Quantization in Coulomb gauge is presented, e.g., in the first Ch. 1 of Mandl-Shaw, in
the first part of Sec. 4.4 of Ryder, Quantization in the Lorenz gauge is developed, e.g., in
Ch. 5 of Mandl-Shaw, in the second part of Sec. 4.4 of Ryder, in Sec 7.3.2 of Aitchison-Hey.
The lecture notes of prof. Miglietta present both approaches.

19To be precise, the Lorenz gauge with A? = 0 is called the “radiation gauge” and corresponds to the
Coulomb gauge only in the absence of charges.
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3.6.2 Lorenz gauge

Instead of working with the original Lagrangian, we use
1 , 1

L=——F,F" — 2%

4
This Lagrangian is not gauge invariant anymore. It corresponds to the original Lagrangian
only in the Lorenz gauge. The additional term we included is called “gauge-fixing” term.
To obtain the equations of motion we need

(HAL)* — jHA,. (3.245)

_— = — jH
I, 7+, (3.246)
oL 1
O _QVAM 1 QHAY — —oHvyP
303, A) dVAH 4+ dH A 5g P Ap. (3.247)
The equation of motions are
0,0° A* — (1 —-1/&)0"9,AP = jH. (3.248)

The above equations do not correspond to Maxwell’s equations. They do only with the
extra condition imposed by the Lorenz gauge. In other words, the new Lagrangian cor-
rectly describes the physics only in the Lorenz gauge.

In the following, let us choose £ = 1 (this choice is called “Feynman gauge”) and
consider the field in the absence of external currents. We then assume as a starting point

the Lagrangian

1 1
L =N| - 1 W FHY — E(a“A,i)2 . (3.249)

The equations of motions, in the absence of currents, now are
d,0°A* =0, (3.250)

i.e., they are completely analogous to a set of four Klein-Gordon equations without masses.
The conjugate fields are
oL
V= = —F0 - %9, A", 3.251
T T 3(0vAy) & on (3251
For the 7¥ field, we have potentially a nonzero result. However, if we assume the
validity of the Lorenz gauge condition in a “strong sense,” i.e., at the level of the opera-
tors, we would obtain again a vanishing field. The solution is to consider the condition
in a “weak sense,” i.e., that the expectation value of the operator d,A* vanishes on any
physical state
(Y]o, AH|¥) = 0. (3.252)

We will see the consequence of this condition at the end of the chapter.
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As usual, it is possible to start from a Lagrangian that differs by a four divergence. For
instance it is convenient to use

Liv = —%(auAv) HAY. (3.253)

The difference between the two Lagrangians is

1 1 1
Lon— L = =5 (QuAy AT + (@uany A — (#A4%)3,A,) + 54,7
1

= 5 (= @ aM)3, A, +244,0,47) (3.254)

1
= > (= 94(A"9,4,) +9"(4,9,4"))
The equations of motions are unchanged. The conjugate fields, with the last version

of the Lagrangian, are simpler

v __ oL _ 0qpv

3.6.3 Polarization vectors

As we know from classical electrodynamics, the electromagnetic fields need to be de-
scribed using polarization vectors. In Minkowski space there are in general four possible
polarization vectors.

To build explicitly the polarization vectors, we can start with introducing a time-like
vector n* (for which n? > 0) and set!!

o®

Sk
N

(3.256)

Then we choose one of the other three polarization vectors along the component of k
orthogonal to €y and with modulus —1, i.e.,

1

Vn2(k-n)? — nik? (K = (- m)n*). (3.257)

H__
63_

Finally, the other two polarization vectors are chosen to be orthogonal to both n and k and
with modulus —1.

We normally call A = 0 timelike or scalar polarization, A = 1,2 transverse polariza-
tions, and A = 3 longitudinal polarization.

We could also start from a space-like vector, normalized to —1, with the due attention to changing signs
where required. Using a light-like vector requires a different strategy because it cannot be normalized to
+1.
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The polarization vectors fulfill the following properties:

(k)€ (k) = gan, (3.258)
Y. gav e (K)ex (k) = g (3.259)

Remember that the indices A and A’ refer to the polarization states, not to Lorentz indices,
even though g, is formally equal to the Minkowski metric tensor. To make a clear dis-
tinction, in Mandl-Shaw the notation 30, is used, where {; = —1 and ¢; = 1 (therefore,
—CAdar = gan)-

It is useful to write down the result of summing over the transverse polarization states
only

Azlf (R)ey (k) = —g"" + e (k) el (k) — e (K)ey (k)
3.260
— _oHY 1 nl(kFnY k0t — 2 kM kY — K2 M nY ( )
_g+(kn)2_n2k2knkn+kn n“kt kY —k-ntn”|.

If we impose from the beginning that k? = 0 the situation considerably simplifies. The
sum of the transverse polarization states becomes

02
(k-n)?
The sum of the two unphysical polarization vectors is in this case proportional to k*

N . 2
e (k) + e (k) = gk“. (3.262)

*x /7 g 1
Y e Rex(®) = =g+ (Kn" + k") - Kk, (3.261)

A=1,2

We have also
kueh (k) = —kyel (k) = —=. (3.263)

In a frame where the momentum k is in the z direction, i.e., k = (]E|, 0,0, |H), the
polarization vectors can be written as

el (k) = (1,0,0,0), (3.264)
el (k) = (0,1,0,0), el (k) = (0,0,1,0), e (k) = (0,0,0,1). (3.265)

The transverse polarizations above correspond to the so-called linear transverse polariza-
tions. For the circular transverse polarizations, one can choose

et (k) = ~75(0,1,i,0), e (k) = (0,1, —,0). (3.266)

In all cases, k€] = kuehy = kue!l = kue” =0.
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3.6.4 Solutions for the electromagnetic field

The general solution has the following form

A(x) = AR (x) + AR Z / e (SO @ + & @al @),
(3.267)

with k% = wy = [k|. The only differences with respect to a real Klein—-Gordon field are the
fact that the mass is zero and the presence of the polarization vectors €. They appear be-
cause now the field is a vector field, with four Lorentz components and with, in principle,
four different polarizations.

In order to check in detail the form of the commutation relations, we need to compute
Poisson brackets

Hix), v (x' _ 3, dA*(x) aﬂv(x) ¥ (x") 0AH(x)
{A (x), 7" ( )}PB /d (aAP(z) 071y (z2) aAP( ) o (Z)>
:/d3z5“gV”5p5( 2)5(X' —Z) = g"s(X - ¥').

(3.268)

We want now to check the usual canonical commutation relations (we are dealing with a
spin-1 field): 12

Vit . 43k A3k '
[AF‘(_X),H (x } x0—=x0/ o 7\,27\// 27T 32wk / (27_[)32wk/ (—lwk/)
X ( eA(k)eA, (k’)[ (k),a;,(lz”)} o ik ik’ (3.269)

+ b (R)ex, (R [a} (), ax (R)] e~ ¥

50— 0/

In order to obtain the canonical commutation relations, we have to impose
[ax(K), ab, (K)] = —gan (270)22a8(k — F). (3.270)

Note that this relation has a peculiarity: the commutation relations for transverse and
longitudinal polarizations are the usual ones, but the time-like polarization has an extra
minus sign. We shall investigate later some of the consequences of this choice.

The final result for the commutation relations is

d®k i > -
u v _ fzk (x—x') ik(x—x' v
[A (x), 7 xO—xO/ (27) 3 2 te >;\z)\:r s 6)\ (k)e)\/(k) x0=x0/
= ig"vs(X — X').
(3.271)

12We remove vanishing commutators from the beginning.
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We could have also started from the Lagrangian in the form of Eq. (3.249). In this case
the conjugate fields have additional terms with spatial derivatives and we should check
what happens to commutators of this type

&K’ .01

xO—XO/ - Z/ 32wk / (27T)32wk/ (lk )
X (6 (K)eXi (k') [an(k), ab, (k7)) e~ kx el (3.272)

— et (R () [a} (B) ay ()] e )

By inserting the commutation rules of Eq. (3.270) into the previous equation we obtain
that the contributions containing the spatial derivatives vanish,

[A%(x),9'A]

30— 0/

[A”( ), alAV} o _ /27T—32wk2<k1 zk (F—7") + Kle —ik-(¥—%' ) ZgAN e}\ eA,(E)
AN
3 il - o
(27r)32wk 2

(3.273)

The fact that the contribution with spatial derivatives vanish is in agreement with the fact
that we can use both expressions for the Lagrangian.

3.6.5 Hamiltonian of the electromagnetic field

Using the Lagrangian in the form of Eq. (3.253), it is easy to compute the Hamiltonian as
. L 1. . 1o -
H= /d3x AR~ L) = /d3x (= AuA¥+ SA AM =2V A, - VAL

/ P +(VA)2).

Calculations similar to the Klein—-Gordon field (cf. Sec. 3.3.3) lead to the following
result for the Hamiltonian (after the application of normal ordering)

3 L
H= /% Wi ;(—gm) al (k)ax (k)

(3.274)

a3k L o (3.275)
- / (2m)32w; w (= aj(Brao(®) + Y a} (Kar(®)).

Due to the presence of the contribution of the time-like polarizations, the Hamiltonian
may have negative expectation values. This is due to the negative sign in the commuta-
tion rules. Moreover, the norm of a state with a time-like photon (or any odd number of
time-like photons) is negative:

(Lok|lox) = (0]ag(K)ah(k)|0) = (0lal&yag(E][0) + (0[ao(K), al (k)] |0) = —(271)>2K°5(0).

(3.276)
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To overcome these problems, we adopt the so-called Gupta—-Bleuler procedure. We
know that scalar and longitudinal polarizations should not be physical and are somehow
artifacts of our choice of a “non-physical” gauge. We therefore make use of the Lorenz-
gauge condition (in its weak sense). The situation is similar to the case of the equations
of motion, where we needed to make use of the Lorenz condition to recover Maxwell’s
equations. Imposing the condition

I AH|W) =0 (3.277)

is already too strong a requirement: not even the vacuum satisfies this condition. How-

ever, it is sufficient to assume
I ART|W) =0 (3.278)

to guarantee that
(W|0,AH W) = (W]9 AR + 0, AMT W) = (W]9,AF W) = (V|0 AT W)™ =0. (3.279)
The condition (3.278) implies that
Y kueh(K)ax(k)[¥) = 0. (3.280)
A
The two transverse polarization states do not contribute since they are orthogonal to k.

The only nonzero contributions come from time-like and longitudinal photons and since
kuey = —ku€el we obtain

[a0(K) — a3 (k)] [¥) =0, ie, ag(k)|[V¥) = az(k)|[V) (3.281)
and its adjoint
(W|[a} (k) —al(K)] =0, ie, (Wlah(k) = (w|ai(k), (3.282)
An example of a physical state is
W) = (—ab(q) +al(g)|0) (3.283)

Due to the conditions above, in any physical state the contribution from time-like
photons to any observable should cancel that of longitudinal photons, leaving only the
physical contributions.

Let us take for instance the case of the Hamiltonian. Due to the above conditions we
have

(W]al (K)ag(k) — al(K)az (k) [¥) = (¥|al (k) [ao(K) — az(k)][¥) = 0. (3.284)

In the end, the net result is that the expectation value of the Hamiltonian on a physical
state is

| H|w) w/ (F)ar (F)[W), 3.285
(Y[H|Y) | 27T32wk ké% AR)[W) (3.285)

i.e., only the transverse polarizations give a contribution to the energy.
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3.6.6 Coulomb gauge [optional]

The equations of motion (in the absence of currents) were
o F"™ = 0,0VA* — 9049, AY =0 (3.286)

Foru=20
RO — V20 — (2@ — V- A) = —V20 — 0;(—V~A) = 0. (3.287)

This means that in Coulomb gauge the scalar potential has to fulfill Laplace’s equation. If
we choose the boundary condition @ (f, 00) = 0 the solution is trivially ®(x) = 0. Due to
the gauge condition, the time component of our field A* is not a dynamical field anymore.
When charges are present, ® may be different from zero, but it is entirely given by the
distribution of charges and is not a dynamical field. It can be defined as an “auxiliary
field.” Auxiliary fields are used to deal with systems with constraints. In this case, our
system is constrained by the Coulomb gauge condition.

We can stop considering the A° field and continue the discussion with the A’ fields
only. The classical solutions for the potential are

2 3
co - B (o o g b
Alx) = AT (x) + A (x) = A; / @ (ExByaa(Fye=™ + & (Ryal(F)e), (3.288)
with k0 = wy = k]

In this case, we have only two possible polarization states. This is due to the fact that
the choice of gauge imposes

>l
oL
Il
o

(3.289)

The conjugate fields are . . .
7 =—r%=F. (3.290)

We can proceed now with canonical quantization and impose the commutation rules
on the a and a' operators in the usual form. It turns out however that the commutation
rules for the fields and their conjugate are nontrivial (see, e.g., Ryder)

. : A3k AN
i J (A _ ij ik-X
[A'(x), ! (x)] o / 2 (6 ‘mz)e : (3.291)

3.7 Conclusions

In this chapter, we have dealt with field theories and how to quantize them. To do this,
we promoted the fields to operators and imposed commutation or anticommutation rules
to the fields and their conjugate, or to the corresponding creation and annihilation opera-
tors. We have seen that scalar and vector fields (in general, bosonic fields) must be quan-
tized using commutation relations and Dirac fields (in general, fermionic fields) must be
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quantized using anticommutation relations. We have seen how to derive the fundamen-
tal properties of these free fields and in particular we have seen that they always lead to
positive energies. In the next chapter, we will see out to deal with interactions between
the fields and compute some the cross sections for simple scattering processes.

Typical questions that can come out during the exam:

1. Prove Nother’s theorem for internal symmetries;

2. Derive and discuss the energy-momentum tensor;

3. Discuss the quantization of bosonic and fermionic harmonic oscillators;
4. Describe the procedure of field quantization;

5. Derive the Hamiltonian of the Klein—-Gordon field;

6. Derive the Hamiltonian of the Dirac field;

7. Discuss the quantization of the electromagnetic field.

3.A Variation of the action in presence of explicit depen-
dence on coordinates

In Eq. (3.33) we assumed that the Lagrangian did not depend explicitly on the coordi-
nates. If we relax this assumption, we need to include some extra terms (see, e.g., [29, Sec.
3.2]).

55 = / A4y L(¢), 9., x') — / d*x L, 9., x) (3.292)
Q Q
We describe the coordinate transformation as
xH — x'H = xH -+ SxH (3.293)

We need to consider the Jacobian of this transformation

ox'H*

d*x' =
* ox?

d*x = |85 + 9)6x"|d*x & [1 + 9, (6xH)|d*x (3.294)

To understand the last step, let us check a two-dimensional example

0 1
det (1 + dpdx dpdx

~ 0 1

all other terms of the determinant are higher-order in the variation.
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Including the effect of the Jacobian, we obtain for the variation of the action

ss= [ d4x{£(¢/, 9, x) — L(9,dub, x*) + L(, 0,8, x'ﬂ)auwx“)} (3.29)

writing the Lagrangian as

oL oL
+ aT)r&pr + Wa,i(&pr) + (9uL)éx*  (3.297)

and stopping at first order in the variations, we get

E((P// aH(P// x/ll) = E((P, a!id)/ x“)

5S = /Q d*x { oL o¢r + a—ﬁau(&l’r) + (9 L) ox* + Eau(éx“)}

o a (o oL '
= {ad)r TP S LA a“(“xu)}

which eventually leads to Eq. (3.35).
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Interacting quantum fields

In the previous chapter we introduced the essential concepts in the description of free
fields. However, fields with no interactions are quite dull. Interesting phenomena emerge
when we put different fields together and we assume the presence of interactions among
them. The resulting Lagrangian density will typically be the sum of the free Lagrangians
plus an interaction Lagrangian

L=Ly+ L. 4.1)

The interaction Lagrangian contains a parameter that defines the strength of the interac-
tion, the so-called “coupling constant.”

Finding the analytic solutions of the corresponding equation of motions is normally
unfeasible. Therefore, the path to follow is to consider the interaction as a perturbation
of the free-field situation. In other words, the problem can be studied as an expansion in
the coupling constants, truncated to a certain order.

4.1 Lagrangians with interactions

For an extended discussion, see Sec. 4.1 of Peskin—-Schroeder.

The ways to include interactions between fields are restricted by the usual require-
ments that the Lagrangian density must be a Lorentz scalar and must be Hermitian. Nor-
mally, we also prefer to avoid introducing derivatives of the fields in the interaction part.
This guarantees that the conjugate fields of the interacting theory correspond still to the
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Apt “ABC” Yukawa Fermi QED Scalar QED
P G QI A -% ﬁ
(a) (b) (d) (e)

Figure 4.1: Interactions between fields can be represented diagrammatically in terms of vertices.

free-field theory. All canonical commutation or anticommutation rules are thus unaf-
fected.

In spite of the constraints, the possibilities to build a Lagrangian with interactions
are endless. A strong constrain is posed by the possibility of renormalizing the theory.
The rule of thumb in this case is: renormalizable theories must have coupling constant
with dimensions [M]¢ with d > 0 (see, e.g., Sec. 5.6 of Maggiore for a relatively concise
discussion of this issue).

Apart from QED (which we are going to analyze in the next section), instructive ex-
amples are the so-called ¢* theory, “ABC” theory, Yukawa theory,and scalar QED.

* In the ¢* theory, a real scalar field interacts with itself. The Lagrangian is
1 " 1 5,5, Ay
,C¢4 =Lxg+ L1 = Eaud)a ¢ — Em P — Ed) . (4.2)

The fields have dimensions [M], therefore the coupling A is adimensional and the
theory is renormalizable. The interaction could be described by the symbolic vertex
in Fig. 4.1 (a).

¢ The “ABC” theory (see Aitchison-Hey) is constructed with three distinct real scalar
fields that interact together

1 1
Lapc = Lxca + Lxes + Lxee + L1 = (Eaud)ia“d)i - Em?d)?) — Apadpodc.
i=A,B,C
(4.3)
The coupling constant has dimension [M]'. The corresponding vertex is depicted in
Fig. 4.1 (b).

* The Yukawa theory describes the interaction between a scalar field and a fermionic
tield

_ 1 _
Ly = Loie+ L+ L1 = B(i9 = m)ip + 5 (3.99"p — m?¢?) + g, (44)

The field ¢ has dimension [M], while the field 1 has dimension [M]3/2, therefore
the coupling constant is adimensional also in this case. The Yukawa theory can be
used to describe the interactions between nucleons and pions. The corresponding
vertex is depicted in Fig. 4.1 (c).
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¢ We will shortly mention scalar QED at the end of the next section. There are in this
case two vertices, depicted in Fig. 4.1 (f).

An example of nonrenormalizable theory is a theory containing a four-fermion inter-
action

L1 = Grpypynp. (4.5)

In this case, the coupling constant must have dimensions [M] 2. This Lagrangian was
used by Fermi described the production of 3 radiation inside the nucleus in 1933. It rep-
resented the first application of quantum field theory outside QED. Although valid only
approximately, it gave account of the fact that the neutron can decay in a proton and an
electron, without being necessarily constituents of the neutron, and in addition it includes
the emission of a neutrino, the particle that Pauli proposed to resolve the problem of the
missing energy in 3 decay. The corresponding vertex is depicted in Fig. 4.1 (d).

4.1.1 The QED Lagrangian

In this course, we are mainly interested in the QED case, where fermions interact with the
electromagnetic field.

A way to derive the form of the QED Lagrangian is to invoke the principle of local
gauge symmetry. We know that the Dirac Lagrangian is invariant under a global gauge
transformation (i.e., changing the phase of the fields by a constant amount everywhere).
What happens if we require the theory to be invariant under a local gauge transformation,
i.e., a different phase change for any point in space? The transformation is

P(x) = P/ (x) = e XEp(x). (4.6)
The original Dirac Lagrangian is not invariant under this transformation, because
0 = e~ M9 (x) + ge” P Ip(x)dux(x), (A7)
which means
L — Lpir = qPy*o,x (4.8)

To cancel the symmetry-breaking term, we are looking for an interaction term that
transforms as

L}~ L1 = —qhy*pdux. 4.9)
We discover that if we make the electron interact with the EM field
L1 — 0y A, (4.10)

then the result is invariant under the combined transformation

AF(x) = AM(x) = AM(x) + *x(x)  (x) = ¢/ (x) =e Np(x).  (@&11)
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The first transformation is the usual gauge transformation of the EM potential. This is the
motivation to call the phase transformation applied to the Dirac fields a gauge transfor-
mation (global or local).

If we introduce the useful concept of the covariant derivative!

Dy =0y +iqAu(x) (4.12)
where g is the charge of the particle (for the electron g = —e), we can write the Lagrangian
as

L=19(iD —m)y. (4.13)

The starting QED Lagrangian can be written as (for the electron g = —e),
. 1 L —
Loep = Lpir + Lem + L1 = P (ig — m)p — ZFWF” +epy*pA,. (4.14)

The last term corresponds to the interaction of the electromagnetic field with a current
j* = —ey*, which is the conserved current of the Dirac field associated to global
gauge invariance. The parameter e represents the electric charge, which is also connected
to the fine structure constant ) .
e
A=~

This number represents a measure of the strength of the interaction between the fields. It
is a small number, which justifies a perturbative treatment.

Note that the interaction Lagrangian does not contain derivatives of the fields.

Using the covariant derivative we can write the QED Lagrangian as

(4.15)

— 1
L=y(ip—m)p— ZFWFIW' (4.16)
The equations or motion for the interacting theory are different. They turn out to be

(iD —m)yp =0, (4.17)
o, FYH = —eyH. (4.18)

They correspond, respectively, to the Dirac equation coupled to the electromagnetic field
by the minimal coupling prescription and to Maxwell’s equation coupled to the electric
current associated to the fermion field.

Let us briefly discuss also scalar QED. In this case, photons are coupled to a complex
Klein—Gordon field. The recipe to obtain the interaction is similar to the QED case: it is
sufficient to replace the normal derivatives of the Klein-Gordon Lagrangian with covari-
ant derivatives. The Lagrangian is then gauge-invariant. When expanding the covariant

!Note that there can be different conventions for the sign in front of g in the covariant derivative. This is
ultimately irrelevant, because it has to do with the choice of what we consider to be particles and antiparti-
cles.
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derivative, two types of interaction occur: a vertex with one photon field and two scalar
fields and a vertex with two photons and two scalars.

Lse. gD = Lxc* + Lem + L1

= T p — mPPpiep — jIFWF”" —ieAu (T p — podT) + A A DT .
(4.19)

It may seem problematic to have an interaction which contains the derivatives of the
fields, but in reality this case is still treatable with standard techniques (see, e.g., the dis-
cussion at the end of Sec. 7.4 of Aitchison-Hey).

4.2 The scattering matrix

The material of this section is presented in Quantum Mechanics textbooks (see, e.g., the
treatment of time-dependent perturbation theory in Sakurai, the treatment of the scatter-
ing matrix in the book by Boffi), but it is also reviewed in, e.g., Mandl-Shaw, Sec. 6.2, and
Peskin-Schroeder, Sec. 4.5.

In quantum mechanics, the effect of perturbations can be described by means of the
scattering matrix. The scattering matrix describes the probability to make a transition
from an initial state i), long before the scattering occurs, to a final state |f), long after
the scattering occurs. The initial and final states are considered to be eigenstates of the
unperturbed Hamiltonian. The definition of the scattering matrix can be taken as

If) =|¥(t = 00)) = S[¥(t = —c0)) = S[i). (4.20)

The transition from |i) to |f) is then associated to the matrix elements of the scattering
matrix

Sti = (f|S]i). (4.21)

The scattering matrix corresponds to the limit of the time-evolution operator in Dirac

picture
S = lim U(tf, ti)- (422)

tj——o0
tf~>oo

The scattering matrix is unitary, i.e.,

sst=sls=1) |57 =1, (4.23)
f

which is a mathematical way to express the conservation of probability.
Without deriving it, we give for granted the following expansion (Dyson’s expansion)
of the S matrix

s f(—i)"/_z it /_t;dtz.../tnl dtHy () H () ... Hy(t)
(—i

n= -0

o

(4.24)

o0

y n'!)n /_O:odtl /_o:odtz.../_O:OdtnT[HI(tl)Hl(tz)...Hl(tn)],

0

n
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where we have used the time-ordered product T|...], yet another form of operator order-
ing. The operators are ordered so that the later times stand to the left of earlier times.

Note that the S matrix can be written as an exponential, since its definition corre-
sponds to the expansion of an exponential. Moreover, note that at “zeroth” order in the
couplings the S matrix is just the identity, which means that nothing happens to the initial
states.

We can use the above results almost directly. There are only two things we have to care
about. First, we need to switch to Hamiltonian density, which is a trivial step. Second, we
have to keep in mind that switching the order of fermionic operators involves adding an
extra minus sign.

The time-ordered product for two operators can be written explicitly as

T[A(x1)B(x2)] = 6(t — t2) A(x1)B(x2) + (=1)"6(t — t1) B(x2) A(x1). (4.25)

where P is the number of interchanges of neighboring fermion operators required to
achieve the desired time ordering. For instance, P = 0 if A and B are two bosonic fields,
and P = 1 if A and B are two fermionic fields. Note, however, that the fermion inter-
changes are essentially irrelevant when it comes to reordering interaction Hamiltonians,
which in all cases of interest for us always contain two fermionic fields (in order to have
a scalar Lagrangian density).

In summary, we can write

n!

sznio(_i)n /O:Od4x1 /O:Oa#xz.../O:od‘*an[Hl(xl)Hl(xz)...Hl(xn)] (4.26)

For convenience, we can rewrite the Dyson expansion in this way
s=Y s (4.27)
n=0

where

50 — %/_Zd‘*xl /_O:od4x2.../_O;d‘lan[HI(xl)HI(xz)...Hl(xn) . @428

4.3 Scattering matrix and Feynman diagrams

We now consider the problem of computing the scattering matrix and in particular the
single terms of the Dyson expansion, see Eq. (4.28). We note that, if the interaction La-
grangian does not contain derivatives of the fields, we have

Hi=—-Ly. (4.29)

The zeroth order term, S(9), is trivially the identity. No scattering takes place in this case.
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4.3.1 First-order contributions in the “ABC” theory

As an illustration of the calculation of a scattering amplitude, we first consider the “ABC”
theory discussed in Aitchison-Hey, Sec. 6.3.
The interaction Hamiltonian reads

H1 = AN @4 (x)bp(x)gc(x)|
= AN [ (5 (x) + &5 () (0 (x) + &5 (1)) (6 (x) + 9 () .

We remind ourselves the expression and meaning of the components of the field op-
erators

(4.30)

3 . .
¢ (x) = /% a(k)e particle absorption, (4.31)
k
_ d3k TN ikx . .
¢ (x) = / e a'(k)e particle creation. (4.32)

There are eight possible terms in the expansion of the above interaction, each corre-
sponding to a different process. For illustration purposes, let’s start from a process that
starts with particle C and ends with particle A and B.

The initial state is (in the following, let us skip the vector notation inside the argument
of the ladder operators)

i) = al(pc)|0), (4.33)
the final state is
(f| = (0laa(pa)as(ps)- (4.34)
The term of the scattering-matrix expansion under consideration is
S(a) = ~iA /_ . d'x N [¢Z(X)¢E(x)d>é(x)] (4.35)

No other terms can contribute to the transition we want to compute, i.e., the expectation
value of any other combination of the fields would vanish between those particular initial
and final states. Note that the operator is in this case already normal ordered, which is
however not relevant because the A, B, and C field operators commute.

The transition amplitude from the initial to final states defined above is

(Fl8liy = =i [ d (0]aa(palas(ps) (61 (x) b5 ()9E () Jal (pc)]0).  (436)

We replace the usual expression for the field operators

<f|583|1> = —i/\/d4x (0laa(pa)as(ps)

&’k T ikx d3q T igx &K' " ,—ik'x
x/ 22w, alk)e / (27r)32wan(q)e / oy ke

X aTC(pC)|O>.
4.37)
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A
Py
pc /,’A
Te-aw
C \\B
i

Figure 4.2: Feynman diagram corresponding to the decay C — AB at first order in the "ABC” theory
containing three different scalar fields.

We have now expressions such as

ac(kK)al(pc)|0) = [ac(K'), al(pc)]|0) + alipelacti)[0) = (27)*2wps(K' — fc)|0),
(4.38)
and similarly for the A and B fields. We see here why there could not be contributions
from other terms in the interaction Hamiltonian.
Replacing these results into the transition amplitude

sy — _ia [ g4y e—ilPc—pB—pa)x
15 @)

a (4.39)
= —(27T)4iA 54 (pc — PB — PA)

The last delta function expresses the conservation of four-momentum.
We can rewrite the above result introducing the so-called Feynman amplitude M

(FISi]i) = (@7m)* 8*(pc — pp — pa) iM(}). (4.40)

where
iMY = _ia. (4.41)

The scattering amplitude M is often defined with different prefactors, e.g., 1 or —i instead
of i. This detail is irrelevant in the end, since observables are related to the modulus
squared of the amplitude.

The scattering amplitude can be described by the Feynman diagram drawn in Fig. 4.2.
In this simple case, there is only one Feynman rule to take into consideration: to each
vertex, we need to associate a factor —iA.

What kind of observable can we compute with this result? We can study the decay
rate of the process under study, and consequently the half-life. Without proving it, we
give the formula for the decay rate of a particle with mass m and momentum p into n
particles with momenta p I (see, e.g., Peskin-Schroeder, end of Sec. 4.5)

_ 1 2 dpy 444

The formula is valid in the particle rest-frame, which is also the center-of-mass frame
(CMF) of the decay products.
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We can specialize the above formula for the decay C — AB

3 3
AT — 1 ’ ’2 dPA de

454
2mc (271)32E 4 (277)32Ep (27)*6* (pc — pa — pB)- (4.43)

At this point, we have to decide with respect to which variables we want our decay
rate to be differential. Clearly, the three components of momentum of particle A and the
three components of particle B are redundant, because the four-dimensional delta func-
tion introduces four constraints. In principle, we can keep the decay rate differential with
respect to two variables. We could for instance choose to study the angular distribution
of the decay products in the center-of-mass of the system. The involved momenta are

pc = (mc, 0, 0, 0), (4.44)
(EA, |Pa|sinBcos ¢, |Palsinbsin, |]5’A|c059), (4.45)

@)
I
=5

pp = (Ep, —|Pa|sinfcos¢, —|pa|sinOsingd, —|pa|cosb), (4.46)

with E4 = /|Pa|? + m? and similarly for Eg. On top of this, we must have E4 + Ep =
mc, which puts in turn the constraint

Pal = ﬁ (m% — (ma + mB)2> (m% — (my — mB)2>. (4.47)

There are several ways to obtain the final result in a convenient way. For instance, we
can follow these steps

Ppa dpp 44
(27)32E 4 (271)32E (27)°8%(pc = pa = p5)

d3 a3 S
- (Zﬂ)g;EA (27T)§§EB (27-[)453 (pC —PA— pB)(S(EC —Ej — EB)
_ Pal?d|PaldQ 1

(27T)32EA 2EB

|ﬁA‘2dQ a(EA—l—EB)
(27)22EA2Ep | 9|pa|

(4.48)

(27‘[)5(EC — EA — EB)

Pc=Pa+Ps
—1

pc=paA+ps

In the last step, we used the properties of the delta function to change from a delta func-
tion expressed in terms of E 4 + Ep to an expression in terms of |F 4.

The above steps are general. If we want now to use the center-of-mass variables, we
ought to write

dEa+Ep) 9 — - 1 1
— = —= +m? + 24 m2 ) = — 4+ =
alpA’ a|pA’ (\/|pA| A \/|pA| B) |pA| E4 Ep (1.49)

|ﬁA| M
EqEp
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Putting things together, including the calculation of M, we obtain the following ex-

pression for the decay rate
1 |PA| 2
ar = —-A%dQ. 4.50
3272 m2 (2:30)
Note that the decay rate in this case is isotropic, i.e., independent of the angles. Breaking
of isotropy can occur if we deal with particles with spin, but not with scalar particles.
Note also that the decay rate would go to zero if mc < m 4 + mp (due to Eq. (4.47)).

Integration over the solid angle in this case gives just a 47 factor, i.e.,

r= L1Pale (4.51)
87 mc

The total decay rate has the correct dimensions of a mass or energy (due to the fact that A
in this theory has the dimension of a mass). In natural units, the inverse of the decay rate
has the dimesions [M]~!, which multiplied by 7/c? gives a time in standard units and
corresponds to the lifetime of state C.

4.3.2 First-order contributions in QED
For QED, the interaction Hamiltonian reads

Hi = —eN ||
I (4.52)
= —eN|[(@" +9 ) (AT + A7) (@ +v7)).

We remind ourselves once more the meaning of the different components of the fields

_ A’k o . :
" x) = zs: / st(k)vs(k)e ihx positron absorption, (4.53)
(x) = Z / dg—ch(%)ﬁs(E)eikx electron creation (4.54)
2 32wk ’ ’
AFt(x Z / 7 32wk E)a;\(%)e_ikx photon absorption, (4.55)
AT (1 pikx :
Z / 2] Zwk £ (k)al (k)e photon creation, (4.56)
PH(x) = Z / 27T—32wkcs(ﬁ)1,ts(E)e*ik" electron absorption, (4.57)
T T 7 Hikx : :
Z / 5o 32wkd (k)vs(k)e positron creation. (4.58)

There are eight possible terms in the expansion of the above interaction. For illustra-
tion purposes, let us start from the term ¢y A~1p™. This term can be nonzero only if in
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k
T2 e (sp)

A
g ¥(Af)

Figure 4.3: Feynman diagram corresponding to the emission of a photon by an electron (Bremsstrahlung)
at first order in QED.

the initial state there is an electron (which is then destroyed by ¢ ™) and the final state
contains an electron and a photon. Therefore, it describes the emission of a photon from
an electron. This process is depicted in the Feynman diagram in Fig. 4.3

The initial state is

i) = cl,(k;)|0), (4.59)
the final state is
(f] = (0les (kr)ar, (q5)- (4.60)
The term of the scattering-matrix expansion under consideration is
SE;; = ie/_ d‘ch[E_(x)A*(x)lan(x)]. (4.61)

In this case, the operators are already normal-ordered. The transition amplitude from the
initial to final states defined above is

(FlSliy = e [ (Ofes, (kp)ar, (9 (B~ (DA™ (09" (1)) el (k)[0).  (462)
We replace the usual expression for the field operators
<f|S; ze/d4x <O‘csf ke)ax, ()
AT ikx
X Z/ = 32wkc5 (k)us(k)e

X Z/ 27‘( 3260 >¢A( ) qu
a°K' —ik'x T

x Z/ 27 32wk/ ) (k/ ’0>

Nonzero results can be obtained only if the spins and momenta of the fields correspond to
the spins and momenta of the initial or final states. Formally, as we as seen in the previous

(4.63)

section, we can replace products such as c; f(kf)ci (k) with their normal-ordered version
minus the anticommutators (or plus their commutator for the bosonic a operators), which
give us the usual delta functions. There is only a subtlety concerning unphysical photon
states. We have

a (97)a}(9)]0) = [ax, (a7), 2} (@)]0) + a} (DaxrA77T]0) = (27)>2a05(~gan,)5(7 — 77)|0).

(4.64)
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Since the final state must be a physical state, A; cannot be scalar or longitudinal, but
only transverse, so that —gxy, = S35, Alternatively, we can say that a physical state can
contain scalar and longitudinal polarizations, but only in equal numbers (cf. Eq. (3.281)),
so that the contributions of the two polarizations exactly cancel.

Therefore

(P8l = de [ dbxs (k) 65, (a7) s, (k) e Gk
= (2m)*ie s, (kp) ¢3,(a5) us, (ki) 6% (ki — g5 — k).

The last delta function expresses the conservation of four-momentum.
We can rewrite the above result introducing the so-called Feynman amplitude M

(4.65)

(FISta i)y = @)t 6 (ki — g5 — ky) ngg. (4.66)

where

iMD) = et (ky) ¢4, (a5) us, (k). (4.67)

The scattering amplitude M is often defined with different prefactors, e.g., 1 or —i instead
of i. This detail is irrelevant in the end, since observables are related to the modulus
squared of the amplitude.

The Feynman amplitude is a Dirac scalar. If we write the Dirac indices explicitly, we
obtain

iMyy) = e Tl alky) (¢, (a5)) as s (K;)
= ie g (k)T a (kp) (63, (a)) an = ieTe | (s, ()it (kp) ) (5, (ap) )|

The possibility of using traces in Dirac space is particularly useful in some practical cal-
culations, as we will see in the next sections.

The transition we considered (photon emission from an electron), from the point of
view of the QED interaction is in principle allowed and is of order y/a. However, in
the scattering process we assume that the initial and final states correspond to free field
configurations (eigenstates of the free field operators). As such, they have to fulfill the
on-shellness condition k* = m? in the case of the electron/positron and 4> = 0 in the case
of the photon. Fulfilling this condition and at the same time the condition of conservation
of four momentum is not possible

{kiz:kj%:mz g3 =0
klz: (kf—l—EIf)Z:szc-f—Zkf'q]r-Fq]zc

(4.68)

q]c = 0. (4.69)

This type of transition is possible only if one of the particles is off-shell, i.e., k> # m?.
Off-shell particles can exist only as intermediate states, never as initial or final states, and
are called “virtual particles.”

Other possible processes included in S() are:
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e N[y ATyT]: photon absorption by an electron;

e N WJFA*LI)’} : photon absorption by a positron (note that normal ordering will in-
duce an overall change of sign for this choice) ;

N[ A9 ]: photon emission by a positron (note that normal ordering will induce
an overall change of sign for this choice);

e N[ A 9+]: electron-positron annihilation into a photon;
o N[¢p ATy~]: electron-positron creation from a photon;
e N [EJFA*LI)JF} : annihilation of an electron, a positron, and a photon;

e N W—A_l,b_} : creation of an electron, a positron, and a photon;

Just to see another example, let’s see what happens to the electron-positron creation
case. The initial and final states are

i) = a},(a:)[0), (f = (0les, (g, (py)- (4.70)
The transition amplitude for this process is

(F18Gli) = e [ ¥ (Oles, (k) () (B~ (0Y* ™ (1AL () af (@)]0).  @71)

The normal-ordering prescription requires us to move the A™ field, containing an ab-
sorption operator, to the right. This is not a real issue in the present case, since the A
field commutes with the 1 field. However, to make things more transparent we wrote
the operator in the correct way.

Without explicitly repeating the calculations, we obtain

<f‘587§‘1> - ie/d4x ﬁSf(kf) ¢Ai(%‘) Urf(Pf) e~ @i—ps—kp)x

(4.72)
= (2m)%ie tis, (kg) éx,(qi) vr,(ps) 8*(9i — P — kp).

In general, the scattering matrix is connected to the Feynman amplitude via the rela-
tion

(fIS|i) = 1+ (2m)* 6*(Lhi — Tkys) iM(i — f) | (4.73)

The explicit form of the Feynman amplitude at any order of the expansion in the cou-
pling constant can be reconstructed using Feynman diagrams and Feynman rules. For
instance, given the initial and final states considered above (e.g, electron going to elec-
tron and photon), there is only one possible diagram at order /« (the so-called “leading
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order”). We need simply to associate (dropping for simplicity the spin indices):

Incoming fermion: = u(k), (4.74)

Outgoing fermion: = u(k), (4.75)

(4.76)

I

m
RS
—~
)
N—

Incoming photon: ANNNS

Outgoing photon: e UL =€,(q) 4.77)

Fermion-photon vertex: I = iey* (4.78)

The e in the vertex is consistent with the fact that the electron has charge —e¢, and it is
what we conventionally identify as the “particle” and we associate with u spinors.? For
a positron, its antiparticle, the vertex remains the same, but the incoming and outgoing
positrons are denoted by

Incoming antifermion: —_‘>—‘ = o(k), (4.79)
k
Outgoing antifermion: = = v(k). (4.80)

Note that for external antifermions, the direction léf the momentum is normally taken
opposite to the direction of the fermion line.

When computing a Feynman amplitude from Feynman rules, keeping track of the
overall sign due to the inversion of fermion fields is relevant when several Feynman
diagrams are contributing to a process. Only the relative sign between the Feynman
diagrams matters, not their absolute sign. Whenever two diagrams are related by an
interchange of two fermion lines, a negative sign must be added to one of the two.

4.4 Wick’s theorem

The S matrix is expressed in terms of time-ordered products (T-products). Moreover, the
interaction Hamiltonian is expressed in terms of normal products (N-products). To effi-

ZNote that in different textbooks convetions may be different, as for the case of the covariant derivative.
Ultimately, the absolute sign of the interaction does not change.
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ciently compute the higher-order contributions to the S matrix, we should first consider
how to simplify the time-ordered product of several operators.
The definition of normal product in Eq. (3.119) allows us to write

A(x1)B(x2) = N[A(x1)B(x2)] + (0| A(x1)B(x2)]0). (4.81)
Note also that
N[A(x1)B(x2)] = (=1)"N[B(x2) A(x1)]. (4.82)

Let us now assume A and B are two generic field operators and consider the time-
ordered product (for t; # t;)

T[A(x1)B(x2)] = 0(t1 — t2) A(x1)B(x2) + (—=1)Po(ty — t1)B(x2) A(x1)
= 0(t1 — t2) { N[A(x1)B(x2)] + (0] A(x1)B(x2)[0) |
+(=1)Pa(t, — tl){N[B(xz)A(xl)] + <o\B(x2)A(x1)|o>}
= N[A(x1)B(x2)] + (0| T[A(x1)B(x2)]0)

where in the last step we used (4.82). The last term of the above equation is the vacuum
expectation value of a time-ordered product of two fields, also known as contraction. It
can be nonzero only if they are two fields of the same type, in which case it is called the
Feynman propagator.

The above relation can be generalized to any number of field operators. To do this, we
first introduce the shorthand notations

(4.83)

A(x1)B(x2) = (O|T[A(x1)B(x2)]|0) (4.84)
and we further define
N[Alec3D4 Y. zn} = (—1)? A1C3 BoYy N[D4 . zn} (4.85)
I_|:I L [ -

Eq. (4.83) can be generalized to any number of fields, in which case
T[A1By...Z,] =N [Al By...Z, + all possible contractions] ) (4.86)

This identity is known as Wick’s theorem [34]. Eq. (4.83) is the particular case for two
field operators. The proof by induction starting from the 2-field case is outlined, e.g., in
Peskin—-Schroeder, Sec. 4.3.

In the calculation of the S matrix, we need to consider a time-ordered product of inter-
action Hamiltonians, each one containing normal-ordered operators. In this case, Wick’s
theorem remains valid, but the contractions between operators at equal times (i.e., belong-
ing to the same Hamiltonian operator) should not be considered. Consider for instance
the simple case of an operator composed by two bosonic fields

TIN[p(x)b(x)]| = N[p(x)b(x)] + plx)ptry (4.87)
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The second term must be omitted because the fields are already normal-ordered. This
observation is generalized into the following version of Wick’s theorem:

T[N[AlBl...Zl] ...N[Aan...zn}]

=N [Al By ...Z, + all possible contractions, excluding equal-time contractions .
(4.88)

4.5 Feynman propagators

As we have seen, the calculation of the scattering matrix requires the knowledge of con-
tractions involving field operators. Only certain contractions can be nonzero, since they
must involve the same number of creation and annihilation operators. As a matter of fact,
we only need contractions between two fields of the same nature, which are the so-called
Feynman propagators.

4.5.1 The scalar propagator
The Feynman propagator for a scalar field is defined as

iAF(x1 — x2) = ¢(x1)P(x2) = (0| T (x1)P(x2)]|0)

(4.89)
= (0[0(t1 — t2)d(x1)d(x2) + O(t2 — 1) b(x2) b (x1)|0)

We split the field in positive and negative frequency parts and we remember that ¢ con-
tains an absorption operator and therefore gives zero when acting on the vacuum, while
¢~ contains a creation operator and therefore gives zero when acting on the vacuum to
its left. Therefore

iAp(x1 —x2) = (0|0(t1 — t2) ™ (x1)d™ (x2) + 6(t2 — t1) ™ (x2) ™ (x1)]0) (4.90)

The Feynman propagator is composed by two contributions: when t; > t,, a particle is
created at x; and destroyed at x;; when t; > t1, a particle is created at x; and destroyed
at xp. We can represent the propagator graphically as in Fig. 4.4.

At this point, we observe that

(O[T (x1)¢™ (x2)[0) = [¢T (x1), ¢~ (x2)]. (4.91)

Therefore, we eventually obtain

iAp(x1 —x2) = 0(t — 1) [@T (x1), d™ (x2)] +60(tr — t1) [@T (x2), d™ (x1)]. (4.92)
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Figure 4.4: Graphical representation of the two time-ordered contributions to the Feynman propagator for a
real scalar field.

The calculation of the commutator is not difficult. We use the usual expression of the
field operators of Eq. (4.32) and then we carry out the calculation of the commutator

3 3 . ~ . .
[dﬁ(xl)'d’_(’@)} :/( il /( 4k [a(kl),aT(kz)] o~ ik1x1 pikox

27'[)32wk1 27r)32wk2

:/( " /( e (271)%2awy, 8(ky — kp) e~ 11167272 (4.93)

2m)32wy, J (2m)32awy,
_ ! etk (x1—x2)
(27) 32wk1

In conclusion, we get for the Feynman propagator (replacing the variables x; — xo — x
and k1 — k)

; _ d3k —ikx dsk ikx
iAr(x) = 6(F) / iz ¢ O / @
a3k _ T2 a3k N
= Q(t) / m e Zwkt€Zk X + 6(—t) / W elwkte ik-X (4:94:)

3 - . .
_ / ( d°k ezk~x [Q(t) efzwkt +9(—t) ezwkt} )

27r)32wk

(In the last step we changed the integration variable from k to —k in the second integral.)
Here the two contributions for t > 0 and t < 0 are still separated. However, some math-
ematics allows us to write the Feynman propagator with a more compact formula, mani-
festly Lorentz invariant, where the distinction between the two contributions disappears,
ie,

. d*k i e~ ikx
PR

where € is positive and a limit for € — 0 is understood. It is important to stress that in this
formula k¥ is not fixed to be equal to wy, as we implicitly assumed in the previous equations.
Let us verify the correspondence between this expression and that of Eq. (4.94). We
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Figure 4.5: Pole positions and choice of contours relevant for the calculation of the scalar propagator.

need to observe that

1 1
k2 —m?+ie (k0)* — [F|2 — m2 + ie
1
= = = 4.96
(k0 = /IR + 2 +ie?) (KO + /K + m2 — i€’ (2.56)

1
(ko—wk—l—ie’)(ko—l—wk—ie’)'

where €’ = ¢/ (2wy) (always positive) and where we neglected terms of the order of €2.
We can write the Feynman propagator as

d*k i p—ikx
iAp(x) (27m)* (ko — wy + ie’) (kO T wp— ie’)
A%k dk° i o ik k% (4.97)
= / (27‘[)4 (kO — wi + iEI) (ko T w — 1.6,)

We solve the integration over k¥ using Cauchy’s theorem. We notice that the integrand
has two poles: one for kg = wy — i€’ and the second for kg = —wy + ie’. We further
note that for ¢t > 0, the numerator vanishes for large negative imaginary values of k%:
to use Cauchy’s theorem we need to close the contour in the lower half of the complex
k¥ plane, picking up the first pole (and adding a minus sign because the contour runs
clockwise). For t < 0, the numerator vanishes for large positive imaginary values of k":
to use Cauchy’s theorem we need to close the contour in the upper half of the complex k°
plane, picking up the second pole. In conclusion, we obtain

3 - P ,—iwyt R TIUN
iAF(x) = / %elk* (G(t)(—Zni)lezwk +9(—t)(27ri)(l_ez—wk)), (4.98)

which corresponds to Eq. (4.94).
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Figure 4.6: Graphical representation of the two time-ordered contributions to the Feynman propagator for a
complex scalar field. The only difference with respect to the real field is the need to specify the orientation of
the line in order to distinguish whether a particle or an antiparticle is produced.

In momentum space, the Feynman propagator for a scalar field (i.e., the Fourier trans-
form of Eq. (4.95)) is then given by

i
Ar(k) = . 4.99
I F( ) (kz—m2+i€) ( )
For a complex scalar field, the definition of the propagator is
iAF(x1 — x2) = (0|T[¢(x1)$"(x2)]]0) (£.100)
= (0]6(t1 — t2)d™ (x1) @' (x2) +0(t2 — 1) (x2) ™ (x1)]0).
The expression of the field operators is
+ &’k 7\ ,—ikx : :
o (x) = /W a(k)e particle absorption, (4.101)
k
_ d3k T Jikx . . .
¢ (x) = / (220, b'(k)e antiparticle creation, (4.102)
k
t+ &’k 7\ —ikx S .
¢ (x) = / n)aw, b(k)e antiparticle absorption, (4.103)
k
t— d3k T ikx . .
¢ (x) = / n)aa, a'(k)e particle creation. (4.104)
k

There is no difference in the calculation with respect to the real case. However, the two
contributions can be interpreted in a slightly different way: when t; > t;, a particle is cre-
ated at xp and destroyed at x;; when t, > t, an antiparticle is created at x; and destroyed
at x, (see Fig. 4.6). In the graphical representation, we need to orient the direction of our
line, in order to distinguish the first case from the second.

The Feynman propagator is also a Green’s function. It is in fact a solution of the
inhomogeneous Klein—-Gordon equation

(0u0" + m?) Ap(x) = —&*(x). (4.105)
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We can check the above statement
d4k e—ikx
(27m)% (k2 — m? + ie)
B / d4k ( . k2 + mZ) efikx
@)% (k2 —m? + ie)

(950" + m*) Ap(x) = (90" + m?) /
(4.106)
= —5*(x).

In the above, the position of the poles is irrelevant. Different Green’s functions can be
obtained using different prescriptions for the position of the poles. The one shown above,
with +ie, is the one that defines the Feynman propagator and is correctly connected to
the time-ordered product.

Green’s functions are important for the solution of differential equations. The most
common example is the solution of Poisson’s equation for the electrostatic potential

V20 (X) = —p(X). (4.107)
It is easier to first solve the problem
VG@E-F) = -6 (- 7). (4.108)
With the boundary condition that G — 0 at large distances, the solution is

o o 1

and corresponds to the potential generated by a pointlike source. Then, the solution for a
generic charge distribution p is given by

O(F) = / By G(Z— 7)p(F), (4.110)

corresponding to the linear superposition of the fields generated by many pointlike sources.

4.5.2 The fermion propagator

The calculation of the Feynman propagator for the Dirac field starts again from the defi-
nition
i(SF) 4p(x1 — x2) = (O|T [ (x1)p(x2)]]0)
= (0]6(t1 — t2) W (x1)p (x2) — B(t2 — 1) g (x2) W5 (x1)|0)  (4.111)
=0t — 1) {9 (), Py (32)} = 6(t2 — 1) {b (x2), W5 (1) }
The difference with respect to the scalar propagator is the presence of the anticommuta-

tors. The minus sign in the second term is due to the fermionic nature of the fields. The
Dirac indices A and B are explicitly written. The two contributions can be interpreted in
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Figure 4.7: Graphical representation of the two time-ordered contributions to the Feynman propagator for a
fermion field.

Xl

the same way as the complex scalar field: when t; > t;, a particle is created at x, and
destroyed at x1; when t, > t;, an antiparticle is created at x; and destroyed at x,. The
diagrammatic representation is given in Fig. 4.7

To calculate the anticommutators, we start from the usual expressions of the field op-
erators of Egs. (4.53) and following. Starting from the first anticommutator

{7 (x1),Pp (x2)}

d3k A3k ~ . - } |
_Z/ 2 ; /( 2 {cg, (k1) L, (k2) } s, 4 (ky Vg, (Ip) €™ 1 gika2

1,52 71 32wk 277)32wk2
_ 512;,2/ 27(53;{21(1,,( / (27;1)3;{2260,(2 (27r)32wk25(ﬁ1 - Ez)éslszuslA(kl)gszB(kz) k131 pika s
— [ ot L tealfaima(h) 0
- /(2:)33—12%(%1 +m) 4 e~ 1 1732)

(4.112)

The second anticommutator is similar

{E; (x2), 5 (x1)}

d®k Bk . L -
- Z / 2 ) / ( , {dsl (kl)’d;rz (kZ)} Us,B(k2)vs, 4 (k1) etk1x1 p—ikax2

e 7)32wy, 27)32wy,
a3k ,
_ k = k 1k1(x1—x2)
) 32wk1 J vsa(k1)osp (k1) e
d3k1 ik
_ 1(x1—x2)
(27) 32w ~m)ape

(4.113)
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Inserting the two commutators in the definition of the propagator we obtain

‘ 3 -
O(—1) e [ ot (k= m) e

_ k 0 7 = —iwyt
32wk [G(t) (wpy” — k-7 +m) e

. 3 o
iSe(x) = 0(t) e [ S () T -

<—t>< wey” — K7+ m) ert].
(4.114)

Again, the propagator can be written as before in a more compact way

_ B d*k i (F+m)e
1Sp(x)—/(27_[)4 Y (4.115)

and its Fourier transform is given by

iSe(k) = (k; Ek;ri)ie) . (4.116)

Again, we stress that in these formulas k° is not fixed to be equal to wy, as was implicitly
assumed in the previous equations. With Cauchy theorem it is easy to repeat the proof
that the above expressions lead to the same result as Eq. (4.114). Note that since the
fermion propagator depends on k and not only on k?, it is relevant to remember that k is
the momentum flowing from x; to x1, i.e., it has to follow the direction of the fermion line
(in the complex scalar field case, we could have oriented the momentum opposite to the
arrow with no consequence).

4.5.3 The photon propagator

The definition is the same as for the scalar propagator, apart from the presence of the
Lorentz indices on the fields

iDEY(x1 — x2) = 0(t1 — to) [ATH(x1), A7V (x2)] +6(ta — t1) [ATV (x2), A™H(x1)]. (4.117)
The general expression for the field operators is

AR (x Z / - 32wk e (F)an (k)™ (4.118)

Z | G e el al Bt @119)
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We can then compute the commutator with steps similar to the previous cases. The
only difference is the need to take care of the vector part of the field represented by the
polarization vectors € and make use of Eq. (3.259):

[ATH(x1), A7 (x2)]

d3k Bk . B |
= ¥ [ o [ s o ()l (o) e () (k) e

ALA (27r)32wk1 27‘()32(Uk2

d3k1 d3k2 3 7 7 —ikyx1 ,ikpxo
= )\Z/\ / (27T)32wk / (27T)32wk (_gAl/\z) (277:) ZCL)k25(k1 - kZ) (kl)eAz (k ) e e
1,72 1 2

d3k _i _
=~ | Gy, B Smech ()eis () e b
2

= —g“v/ﬂ e_ikl(xl_xZ).
(27)32awy,
(4.120)

The only difference with respect to the scalar propagator is the presence of the extra
—g"" (and the absence of a mass). Therefore, we can summarize the result of the propa-
gator as

d4k ig;w e—ikx
[18Y%
iDp (x) = / 2n)f (K tie) (4.121)

and its Fourier transform is given by

—ighY

iDEY (k) = m

(4.122)

It is important to stress at this point that the above result is valid only in the Feyn-
man gauge (i.e., Lorenz gauge with & = 1). What happens in other gauges? Let us first
of all remind ourselves that the photon propagator is a Green’s function. The photon
propagator in Feynman gauge solves the equation (see Eq. (3.248))

0p0° DY (x) = —g" 5% (). (4.123)
More generally, in Lorenz gauges with generic £, the photon propagator turns out to be

i

iDp" (k)G = m

(— ¢4 (1 a)"%). (4.124)

and solves the equation

0,078 — (1 -1 /g)a“ag] D% (x) = —g"vs*(x). (4.125)
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To give another example, in axial gauges the propagator turns out to be (see next
Section)

- i T A A0 -0 A
iDE" (k) |ag —(k2+i€)< g+ ") (4.126)

Without proving it, we stress that the differences between the various gauges should
always cancel in physical results (the proof relies on Ward’s identity, cf., e.g., Peskin-
Schroeder, Sec. 7.4). We will check this statment in some examples in the next sections.

4.6 Photon propagator in axial and Coulomb gauge [op-
tional]

The expression of the photon propagator in axial gauge can be obtained starting from a
Lagrangian with the gauge-fixing term

1

*Cg.f. = _E(

n,A*)? (4.127)

The Green’s function of the resulting equations of motion is

iDEY (k)| ac1 =

i (_ W+k“n"+k"n” k* kY

2 2
e P G 7). i

The standard choice is £ = 0, corresponding to the result in Eq. (4.126).

Alternatively, we can check what happens to the expression of the polarization sum
in the last steps of Eq. (4.120). Instead of using Eq. (3.259), we have to use Eq. (3.261), and
we obtain again the result of Eq. (4.126).

The expression of the polarization sum was obtained by setting k> = 0. However, the
covariant expression of the propagator implies that the photon is not necessarily on-shell,
i.e., k> # 0. Therefore, in the axial-gauge case, to be complete we should use Eq. (3.260),
which includes four terms.

. i k-n
ZD%W(k”AGz = (sze) (—g‘”+ (k-n)—z—kz(k” n¥ +kY n”)
) 2 (4.129)
S ATE R\ S TR
I A o e

It is possible to derive this result as the Green’s function of the equations of motion for the
free field, but in this case we need to add two gauge fixing terms (1,A*)? and (9,A*)2.

It turns out that the last term in Eq.(4.129) can be omitted becasue it is cancelled by
an analogous term appearing in the interaction Hamiltonian when adopting this gauge
choice. This situation is similar in Coulomb gauge and this is the case more frequently
discussed in textbooks. Let us see some more details.
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The “standard” form of the Coulomb gauge propagator is

: KO (K nY + Kk ni) kg
iD* () |ee = b (— v 4 _ _ ) 4.130
F ( )‘CG <k2+l€) g ‘k‘2 ’k’2 ( )

As for the axial gauge, we could obtain the propagator in Coulomb gauge as a Green’s
function. In this case we would need to include in the Lagrangian a gauge-fixing term of
the type

1 o -
g = 57 (V- A)? (4.131)

from which we would obtain

L (__guv#_ko(k“”tﬂ-kvnu)__kikv__ékéfﬂkv). w132
(k? +ie) [K[? [k[> [K[*
The usual choice is & = 0, corresponding to Eq. (4.130).

Alternatively, we can use the properties of polarization vectors. In Coulomb gauge, we
have effectively two transverse degrees of freedom only, orthogonal to k and to the pure
time direction, which corresponds to using Eq. (3.260) with n = (1,0,0,0). In practice,
for the polarization sum in Coulomb gauge we obtain

iDp" (k) lcar =

iDp" (k)lcc2 =

] KO (kM nY + k¥ nt Y K2 nktnY
;,(—g”v%— ( nﬁ+ n)_qu _k;in ) (4.133)
(k* +ie) [k[> [k[2 (k]2
which corresponds to Eq. (4.130) only if we impose k? = 0, eliminating the last term.

Let us devote some attention to the very last term and add it to Eq. (4.121), we obtain

an extra term

d*k ijEntnY e~k 1134

/ (2m)*  (KAde) (4.134)

The integration over k” in this case gives a 5(t), which means that this is an “instantaneous
term”, also called a Coulomb term.

It looks like we have a term that potentially spoils the agreement with the Feynman-
gauge calculation. However, this problem is resolved when we look at the form of the in-
teraction Hamiltonian in Coulomb gauge, which contains the expression ¥ (x) A(x)(x).
In Coulomb gauge, the A° component of the field is treated as an auxiliary field, has to
fulfill Poisson’s equation and is determined by the charge distribution at time ¢, i.e. (using

Eq. (4.110) and the charge density associated to the Dirac field p(x') = —e(x')y ' (x))

Al(x) = O(x) = —e/d?’x'wé(;;,’)y—w = —e/d4xlwé(t — ). (4.135)

x| Am|7— ¥

The contribution to the scattering matrix will then become

—e/d4x [E(x)yot,b(x)AO(x)] = 62/d4x/d4x’E(x)yolp(x)_w—iii;(iwf(flc/)5(t— th

(4.136)
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This is the form of the Coulomb interaction (also sometimes called “contact interaction”)
which is an instantaneous interaction, in the sense that a change in the charge density
distribution at ¥’ would be immediately felt by a charge at X.

Coulomb’s interaction is part of the first-order term in Dyson’s expansion of the scat-
tering matrix, but it is of order e? and thus it should be summed to the second-order contri-
butions to S. It turns out that from the second-order contribution to S, the instantaneous
term in the photon propagator exactly cancels the contribution from the instantaneous
Coulomb interaction. In the words of Weinberg ( [33], p. 355): “We se that the apparent
violation of Lorentz invariance in the instantaneous Coulomb interaction is cancelled by
another apparent violation of Lorentz invariance, that the fields A* are not four-vectors,
and therefore have a non-covariant propagator.”

From a practical point of view, it means that in non-covariant gauges we can avoid
including the last term of the propagator, proportional to k?, even if the photon is off-
shell.

Where does the Coulomb interaction ends up, then? Does it disappear? No, because it
is a physical effect that must be already included in the —g*" part of the propagator, which
is the same in all gauges. In fact, if you look at the nonrelativistic limit of the Feynman
gauge expression (following, e.g., p. 125 of Peskin-Schroeder), you recover Coulomb’s
potential.

4.7 Second-order contributions: some examples

4.71 “ABC” theory

Let us start from the “ABC” theory. The second-order expansion of the scattering matrix
is

@) = —3—? [ i, T{N Da(x1)dn(x1)be ()] N[¢A<xz>¢3<xz>¢c<xz>]]- (4137)

Applying Wick’s theorem we can obtain in principle one term without contractions, 9
terms with one contraction, 9 terms with two contractions, one term with three contrac-
tions. However, only contractions between the same fields are nonzero, so that we obtain
only 8 terms: one term without contractions, 3 terms with one contraction, 3 terms with

two contractions, one term with three contractions, i.e., 3
2 A2
sEa)) = —E/dﬁlxld‘ixz N[((ibACI)BdJc)X1 (¢A¢B¢c)x2], (4.138)
2 A2
58 = —§/d4x1d4xz N[(d)Aqud)C)xl (¢A¢B¢C)x2]/ (4.139)

3 As a shorthand, we use x; and x; as subscripts to refer to terms that are all evaluated at x; or x,.
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@ _ N[ o ol :
S) = _E/d x1d*x; N | (padpédc),, (Padsdc),, |, (4.140)
5(621) - x /d4x1d4x2 N _(qud)BCbC) (padndc) |, (4.141)
(d) 2! i X -
2) A - ]
S) =51 / d*xid*xy N _(¢M3¢c)x2_, (4.142)
A2 - ]
SEJ%)) ~ T or / d*x1d*x; N|(padpdc), (Padsdc), |, (4.143)
' g S e L
@ _ N - :
S =% / dixidie, N _(¢A¢MC)X2_, (4.144)
A2 : _
Sgi; =50 /d4x1d4xz N (¢A¢B¢C)xl (d)Ad)Bd)C)xz . (4.145)
. - A

We will discuss all the possibilities only in the section dedicated to QED. For the moment,
let us focus on a specific choice of initial and final states. For instance, let us consider two
A and B fields in the initial and final states, i.e.,

i) = aly (ki)aly(pi)|0), (f] = (0|ap(pf)aa(kp). (4.146)

We need to check if there is a possible term in the above expressions that can connect these
states. It needs to contain two uncontracted A and two uncontracted B fields, therefore we
need contribution S%. In particular, we need one absorption and one creation operator
from the A fields and similarly for the B fields. There are four possible contributions,
corresponding to

(¢adpdc), (Padsdc),, (6205 ¢c), (Phdsdc),, (4.147)
(¢Aadpdc), (Padzdc),, (6ad5¢c), (DhdFdc),, (4.148)

The two terms in the first line are identical, since if we exchange the integration vari-
ables x; and x; we obtain the same expression. It is sufficient to consider only one of
them, multiplying it by a factor 2 that cancels the 2! in the denominator. These terms
correspond to diagram (abl) in Fig. 4.8, since we have one creation and one absorption
operator at each vertex. Similar considerations hold for the two terms in the second line:
they are identical, leading to a cancellation of the 2! factor, and they correspond to dia-
gram (ab2) in Fig. 4.8, since they contain two creation and two absorption operators at
each vertex.

This is a case where there are two amplitudes contributing to the same process, with
the same initial and final states. It is important to determine correctly the relative sign
between these two amplitudes: in this case, only scalar fields are involved and no sign
change occurs if the sequence of operators is modified due to normal ordering.
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pi kf . k
B > = A pi j
\\"/// B \\: //’/ B
C : \\’ _____ ‘//
. ' ki .- ~o Pr
LA A 2 C N
A -~ “~ B A 7 >~ B
(ab1) (ab2)

Figure 4.8: Feynman diagrams contributing to AB — AB scattering.

4.7.2 Electron-muon scattering

Before considering all processes occurring in QED with electrons and positrons, we first
consider the interaction between an electron and a muon. Muons can be considered as
identical to electrons, apart from having a higher mass (m, = 106 MeV, m. = 0.511
MeV). The Lagrangian is obtained just by duplicating the QED Lagrangian, except for
the free photon field part, i.e.,

Le-m = Ee (la - me)l.be + Em(ia - mm)l.bm - EFHVF“V + eEeY“weAu + €$m)/”lpmAu.
(4.149)
The second-order contributions to the scattering matrix are
(2) e? 4. 14 - -
52— 5 [ dadtes T[N [e(x0) Al lm) + (1) A b (50 .

N [ielx2) A he(r2) + T () A (52|

The Lagrangian is obviously more complicated than including only electrons. However,
it allows us to study some simpler cases if specific initial and final states are chosen, as it
will be clear in the following.

Let us consider the case of a scattering of an electron and a muon. The initial and final
states are

i) = el (ki)ch,r, (p1)]0), (f] = (Olemr, (pf)ces, (kp)- (4.151)

We need to have one absorption and one creation operator for the electron and the same
for the muon. Therefore, we need to select the following term in the Wick expansion of
the scattering matrix

_62d4d4N—¢xA V- vPA
_—E/ X1d Xo [(w(ﬂ/ loclpe)xl(ll)my lﬁlpm)xz

+ (ﬁm‘yle?oclpm) ) (@e‘yﬁI?ﬁwe) xZ]

(4.152)
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The second term is identical to the first and can be combined with it to get rid of the factor
2 in the denominator.

Considering only the terms that can give a nonzero contribution and introducing the
photon propagator we obtain

S = ¢ [ dudn (B 00),, iDrep(cs — 1) @l W), (@153)
w(ry)
e~ (sf)

Figure 4.9: Feynman diagram contributing to electron-muon scattering.

Next, we have to insert the expressions of the field operators.

a3k’
P, (x1) Z / 275 (k’)ue o (k) electron creation,
(Uk/ €5
a3k’ - - iy
=) / 272w e Co o (K Yt o (K )e ™1 electron absorption,
o Kt
Y (1) Z/ 2m) 32w , b (7 ) (B )P muon creation,

d3 " . ‘ .
=2 / 27) 32 Hvas O (B )t o (B )e P " muon absorption.
CU 7 ’

r//

As a first step, let us focus on the involved creation and absorption operators. Our
scattering matrix contains this expression
(Oemyr (pp)Ces; (kp)el o (K )cesn (K")ch . (p)empm (P Vel s, (Ki)chr, (pi)]0)
= <0‘Ce,sf (kf)cl s (k')ce s (k”)cl s (ki)cmﬂ’f(Pf)cjn,r/(p/)cm,i’” (P//)Cjn,ri(l’i) }O>
= (0] [cesy Ukp), cb o (k)] |casr (6), el (k)| [emr, (pp) €y ()] [empr(P), el (i) | [0)
= (27T)32wkf sfs’é(kf k/) (271)32wk 55 S//(S(k - k”)
X (20200, 8,,08(F — F') (277)°2y, 8,,,16(F: — ) (0]0)
(4.154)

where we just used anticommutation rules for the ladder operators. Once we have sim-
plified this part of the scattering matrix, we can perform the sum of over the spins and
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integrals over the momenta using the deltas and obtain

<f|SE§l)l) ’Z> = —62 / d4x1d4x2 e Sf (%f)eikfxly"‘ue S.(E')e_ikixliDFI(xﬁ(xl — XZ)

e (Prle elPrizyP thm,r, (Fi)e P

(4.155)

We now replace the expression of the photon propagator and perform the integrations
over x1 and x»

(FISiali) = =€ [ s s, (kp)esty nes, (B)e ™

dtg —i e—iq(x1—x2) L o
X/ (27fq)4 gozfleriE) i, ()€ 2y Pt (Bi)e™ P2

4 . .
_ _62/ (5734 /d4x1d4x2 o~ i(ki=kg+q)x1 ,—i(pi—pr—q)x2

_ - =1 _ _ _
X Tes, (kp)y e, (ki) ﬁ vy (Bf) VP thm,r, ()

(4.156)

d4
_ 2 / T @m)*6@ (k; — ks + ) (2m)*6™ (pi — pr — q)

(27)
% T, (B Yt (1) +2 S8 (7)Y Pt (1)
Pf 791 (qz + le) " f 281

= (2m)*sW (k; + pi — ks — py)

Um,rg (ﬁf)yﬁ”mmi (7i)-

- - —1
X (—€2) Tle,s, (Kf) Y ttes, (K1) ( Saf
q=pi—Pf

q% + ie)
The calculation leads to a simple formula for the scattering matrix, where we can again
find conservation of total four-momentum, but also conservation of four momentum at

each vertex of the Feynman diagram.
The Feynman amplitude is

—

A q2) = f o . —i8ap 7 2\ (—ievB 7
M = Ue,s, (k) (—iey™)ue,s (ki) W - tm,r, (Pf)(—iey”)um,r, (i) (4.157)

On top of the Feynman rules for the incoming and outgoing fermions, which we found
already at order ¢, we can now add Feynman rule for photon propagators

YA VaVaN )
—iguv

Photon propagator (Feynman gauge): L= v

o 4.158
q q +ie ( )

At this point, we should worry about gauge choices and make an important remark:
physical results cannot depend on the choice of gauge. The photon propagator depends
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on gauge. However, we can explicitly check that the additional pieces appearing in
Eq. (4.124) or Eq. (4.126) give no contribution. For instance, let us replace g,3 with gang.
In the first part of the Feynman amplitude we would obtain

Ue,s; (Ef)yaue,si (Ei)q“|q=kf—ki = ﬁe,sf(zf)(kf — Ki)ue,s; (ki) = 0. (4.159)
The last equality holds due to Dirac’s equation for the spinors
(ki — me)u(k;) =0, u(ky)(ky —me) = 0. (4.160)

In conclusion, even if the photon propagator changes in different gauges, the scattering
amplitude does not change.

4.7.3 Yukawa interaction [optional]

We now use the Yukawa Lagrangian to describe the interaction between protons. At
second order we have

5@ = —§ / dxydix T[N P w(x)b(x1))| N[@(xz>w<xz>¢<xz>]]. (4.161)

Suppose we focus on the scattering between a proton and an antiproton, by selecting the
following initial and final states

i) = dl. (ki)el.(pi)|0), (f] = (Ocr, (py)ds, (ky). (4.162)
Without repeating all considerations, we can deduce that the relevant parts of the scatter-
ing matrix will be

SO = g [dadtn N[ v ¢), (B v e), + (@ v ), @ v e),] @16

where we have already put together identical terms and simplified the 2! in the denomi-
nator.

In this case, since we are dealing with fermion fields and there are two contributions
to the scattering process, we need to determine what is their relative sign. Focusing only
on the ordering of the ladder operators, we have N[ddfcfc] = dfcldc for the first term and
N [dcchT] = —chTdc, i.e., the two scattering amplitudes enter with the opposite sign.

The scattering amplitudes become

. 2_ - — i _ N N
ZM(Yl) = —g usf(kf)usi(ki) (qz M2+ ie) — vri(pi)vrf(pf), (4.164)
iM(yz) = +& sy (kg)or(Pr) (@ = M2+ ie) |y Oy, (Pi)us; (ki), (4.165)

where M is the mass of the scalar field. Note that the relative sign between the two
amplitudes can be determined also looking at their expressions: their are connected by
a simple exchange of two spinors (1 and v), which keeps memory of the way ladder
operators were ordered in the interaction Hamiltonian.
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Figure 4.10: Feynman diagrams contributing to pp scattering in Yukawa theory.

4.7.4 Nonrelativistic approximation [optional]

It is instructive to study what happens if we apply a nonrelativistic approximation to
the scattering amplitudes of the electron-muon and of the proton-antiproton scattering
obtained in the previous sections in the nonrelativistic approximation. This is discusse,
e.g., in Peskin-Schroeder, Ch. 4 and in Mandl-Shaw, Sec. 8.7.

Let us suppose that one of the particle scatters off a static potential produced by the
other particle, which we consider the target. In the nonrelativistic limit, we can do these
approximations at the target level

pi = (m, pi), pr = (m,py), (4.166)
and
(pi —pp)* ~ —Ifi — e = —1kp — K| (4.167)
For what concerns spinors, if we use the standard representation we can approximate
them as
1 0
u1(p) ~ u1(0) = vV2m 8 , uz () = up(0) = vV2m (1) , (4.168)
0 0
0 0
v1(P) ~ v1(0) = —v2m 8 , v2(F) = v2(0) = vV2m (1) (4.169)
1 0

Let us consider the electron scattering off an approximately static muon target. The
relevant part of the interaction in the nonrelativistic limit comes from 3 = 0 in Eq. (4.157)
(only (0)y"u(0) survives), which implies in its turn « = 0. Then we get

. —iec _ o
iMen) ~ —~f e (k)Y e (Ki)Tim 1 (0)Y 1t 1,(0). (4.170)
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The scattering off an external EM field can be described by the following Feynman
amplitude (cf. Eq. (8.88) of Mandl-Shaw)

iM = mue sf( f) Aext(%f - k’z) ue,si(%i)' (4.171)

In our case, the external EM field is the one generated by the nonrelativistic approxima-
tion of the interaction with the muon target, wich turn out to be, by comparison with
Eq. (4.170)

Ae(d) = (— Fik 0, 0, 0) (4.172)

This corresponds to the electrostatic potential generated by a negative charge. Its

Fourier transform is
(D(r) = —-, (4.173)

which is precisely the Coulomb potential of a negative charge (in razionalized Gaussian
units).

What happens if we consider the scattering off an antimuon, instead of a muon? we
will have a sequence of ladder operators N [ceced dl m| = —cecedT dm, which introduces a
minus sign with respect to the muon case. The rest remains exactly the same and the cor-
responding potential becomes that of a positive charge. In other words, the change of sign
between a particle-particle or particle-antiparticle scattering (from repulsive to attractive)
is due to normal ordering. The change of sign is typical of interactions mediated by a
vector particle (the photon).

Let us analyze now the Yukawa case. Diagram (Y2), Eq. (4.165), will not contribute,
because spinor products v and u are suppressed. This means that particle-antiparticle
annihilation is not possible in the nonrelativistic limit. Diagram (Y1), Eq. (4.164), gives

-

zg >
iM k¢)us (ki) 9,,(0)vr (0 4.174
o~ e B 8 9 00, 0 @174

In this case, the scattering off a static external scalar field would just be

iM = 2g Tess; (Ky) ttes; (Ki) et Ky — i), (4.175)

which leads to the identification

Gext(§) = Wﬁ (4.176)
and a corresponding potential
V(r) o §e—Mf (4.177)

which is indeed the short-ranged Yukawa potential. Notice that the potential is positive.
The particle-antiparticle interaction is attractive.
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What happens if we scatter a proton off another proton, instead of an antiproton?
First, we will have a sequence of ladder operators N|cfccfc] = —cfcfee, which intro-
duces a minus sign with respect to the previous case. This is similar to the electron-muon
case. However, we have a product uu instead of vv, which introduces another minus
sign. Overall, the sign of the scattering amplitude does not change from proton-proton
to proton-antiproton and the potential is attractive in both cases. This is typical of an
interaction mediated by a scalar particle.

4.8 Second-order contribution in QED: general case

We now proceed to considering the second-order terms in the expansion of the scattering
matrix for QED:

5@ = _& [ dxidtx, T[N [P(x1) Alx) ()| N[$<x2>A<xz>w(xz>H. (4.178)

Application of Wick’s theorem leads to six possible independent terms. Remember
that we should not take into account equal-time contractions and that the nonzero con-
tractions are only the ones between 1, 1), and AA).

52 = —% / dvidbe, N[ (B Aat), (BYPAgh), |, (4.179)
Sty = —;—2! / d'xd'xy N :(%“Aadl))x_,l(%ﬁ A),, + (91 Aat),, (97" Aﬁl{’)xz}/
(4.180)
s = —;—2! / dhadic, N| ($r*Aa), (977 Agy), ] (4.181)
S0 = =51 [ ot N[@p), (4], + () (B 2), |

(4.182)
2 — . _
Sg)) ] /d4x1d4x2 N[(%’Y Aoclub)x1 <1/)7/I3A31!|))x2}, (4.183)
@ _ € [ a o — 4
() = _i/d x1d N[@'PY Aap)  (y Aﬁllr)xjr (4.184)

S(a) 1s easy to analyze because it consists of two independent terms equal to the first-
order one. They correspond to the combination of two of the processes described in the
previous section and not physically possible.
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Vacuum bubbles

S(r) is also easy to analyze: it contains three propagators and nothing else, therefore it
describes no transition and is also called a vacuum diagram or vacuum bubble. This
kind of diagrams do not give a contribution to scattering processes (it can be combined
with any diagram where particles go through unscattered) and should be omitted in the
calculation of the scattering matrix. Also at higher orders, it turns out that these kinds of
contributions (called “disconnected diagrams”) can be omitted in the calculation of the
scattering matrix.

Figure 4.11: Graphical representation of the operator 88%, the so-called vacuum bubble.

Self-energies

S(E) contains two uncontracted photon operators. Note that

N| (Py*A, P A
[<1|1w ), (Py mf)xZ]

= P4 (x1) Y5 (22) e (x1)Pp (x2) V5 cVhpN [Aa(x1) Ap(x2)]

(_1)1.[)B(x2)EA(xl)wc(xl)ED(xZ)VicygBN[Aoc(xl)Aﬁ(xZ)]

(4.185)

(—1)iSEpa(x2 — 1)V4ciSEcD (¥1 — %2) VhsN [Aa(x1) Ag(x2)]
(—1)TI‘ [iSF(x2 — xl))/“iSp(Xl — XQ)YB] N [A(x(xl)Aﬁ (XZ)] .
We can choose + or — components of the two A fields: there are four possible combina-
tions (see Fig. 4.12). The two fermion propagators form a “loop,” and this is in fact called
a loop diagram (vacuum bubbles are also loop diagrams). The occurrence of the — sign in
Eq. (4.185) is typical of fermion loops. Of the four combinations in Fig. 4.12, only two are
physical, in the sense that they can be consistent with momentum conservation. The two
diagrams are actually equivalent, as can be seen upon exchange of integration variables,
and contribute to the so-called photon self-energy. At the order we are considering, the
photon self-energy does not contribute to a scattering process. At higher orders, how-
ever, it must be taken into account and induces a modification of the properties of the
photon itself. The momentum integrals included in the fermion propagators generate
divergences that have to be dealt with using renormalization.

S(4) contains a fermion and a photon propagator, leaving two fermion fields to act on
the initial and final states. First of all, we check that the two different terms in the expres-
sion of S(d) are the same. In the second term, we can permute the two blocks (E AAABYB)
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£ 0. 0 A

Figure 4.12: Graphical representation of the various terms contained in the operator s? ( . The first two

terms are equivalent and represent the photon self-energy, which however does not give a contribution to a
scattering process at the order we are considering. The last two contributions are unphysical.

O 0D g

Figure 4.13: Graphical representation of the various terms contained in the operator S g;g The first term is

the electron self-energy diagram, the second is the positron self-energy diagram. They do not give a contri-
bution to a scattering process at the order we are considering. The last two contributions are unphysical.

(no sign change is required since the block contains a pair of fermion fields and no prob-
lem arises from the Dirac structure); then we exchange the integration variable x; <+ xp,
to obtain the same thing as the first term. Therefore, the S4) term can be rewritten in a
shorter way (note that the disappearance of the 2! factor in the denominator)

s = —e / d*uidhe, N[ (§y" Aatp)., (§7°4 o)., (4.186)

Similar to before, there are in principle four possibilities depending on the choice of +
and — components of the uncontracted fermion fields. They are illustrated in Fig. 4.13
and are again examples of loop diagrams. Only two of them are physical: a particle
can be absorbed and then created, in which case we are considering a contribution to
a process where there is a particle in the initial and final state, or the same can happen
with an antiparticle. These processes correspond to the so-called electron and positron
self-energy diagrams.

Two-to-two processes

S(p) contains a fermion propagator, two fermion fields and two photon fields. As for S ),
the two different terms are the same and we can write simply

s(2 — —? [ d*xd*x, N A, BA 4187
(b) e/ xdtn N| (07" Axp),, (77 Agw), |, (4.187)

There are in principle 16 different combinations of + and — components of the two
fermion fields and two photon fields. Many of them are nonphysical: for instance, a
combination with all + components means that we are absorbing two fermions and two



4.8 Second-order contribution in QED: general case

137

photons and creating nothing. The physical combinations (i.e., the ones that can be con-
sistent with momentum conservation) contain two particles in the initial state and two in
the final state and are only six (corresponding to four different processes), i.e.,

Sgi) = —62/d4x1d4x2 Pa(x1)V5c Az (11)iSEcp (x1 — x2) YDA (x2) W (x2)
= —62/d4x1d4x2 (Y*iSF(x1 — xz)Yﬁ)ABig(x1)A;(x1)AE(X2)1P§(xz)r

Sy = —€ / dtxidtxy (YViS(x1 — x2)vP) 4 gha(¥1)Ag (12) AL (1) (x2),  (4.189)

(4.188)

both corresponding to the process ye~ — ye~ (Compton scattering by electrons)
o) = +e? / dhxrdixy (Y¥iSp(x1 — x2)vP) 405 (x2) Az (1) Af (x2)Pa(x1),  (4.190)
531) = —i—ez/d4x1d4x2 (y“iSp(xl — X2)’)/[3>ABII)E(X2)AE(JC2)AI(JC1)$;(X1), (4191)

both corresponding to the process ye™ — ye™ (Compton scattering by positrons). Note
the change of sign due to the fact that we inverted two anticommuting fermion fields.

2 , —— _
Sgb%) = —¢? / d*x1d*xy (v*iSp(x1 — xz)yﬁ)ABtl)A (x1)5 (xz)AE (x2) AL (x1), (4.192)
corresponding to the process yy — eTe™ (pair creation)
(b6) = —? / d4x1d4x2 ()/"‘iSp(xl — x2)yﬁ)ABA/§ (XZ)AD_C (xl)EX(xl)l,bg (XQ), (4.193)
corresponding to the process eTe™ — Yy (pair annihilation).
5(c) contains a photon propagator and four fermion fields acting on the initial and final
states. Of all the possible combinations of creation and absorption operators, the only

ones that are physical are the combinations describing e”e™ — e*e™ (Bhabha scattering),
e"e” —e e oretet — eTe (Moller scattering).

2 —_— J—
S8 =—2 / d*x1d4% (YopiDEwp (X1 — 12)vE D) (x1) g (x1) P (x2)1 (x2), (4.194)
2
e , — B _
S8y =% / d4x1d*xy (V2 piDEap(x1 — x2)v2 0 ) e (x2)Wp (x2) W4 (x1) W (x1), (4.195)
2 —_— J—
S(3) = +57 [ dxid*xs (iaiDrap(x1 — x2)¥Ep) $a (x1)¥p (x2)BC ()b (1), (4196)
(
(

2
= +51 [ daidnn (VsiDrag (= x2)vep) e (v2)y (1) h () (x2), (4197)
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B o K//\A;éi(
(b1) (b2)
e w
(b3) (bd)
5
04
(b5) b6)

(2)

Fiqure 4.14: Graphical representations of the terms contained in S )" First row: Compton scattering by

electrons; second row: Compton scattering by positron; last row: yy — ete™ and ete™ — yy.
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(c1) (c2)
K K
@ @
(c3) (c4)
:ﬁi K
@ @
(c5) (c6)
Fiqure 4.15: Graphical representations of the terms contained in SE?; First two rows: ete” — ete™

(Bhabha scattering); the two contributions in each row are equivalent. Last row: Moller scattering by
electrons or positrons.

The above expressions all contribute to the process eTe~ — ete™ (Bhabha scattering).
Note the sign change of the last two contributions, ¢3 and c4. Permuting the 1y blocks
and interchanging the integration variables x; <+ x, leads to the conclusion that the first
two expressions (c1 and c2) and the last two expressions (c3 and c4) are the same (which
allows us to consider only one of them and remove the 2!).

2 , .
0= /d4x1d4x2 (Y2 piDEag (X1 — 12072 )1 (x1)c (x2) W (1)1 (x2), (4.198)
corresponding to the process e e~ — e e~ (electron Moller scattering),

(2) e [ 4 a B \.— L= =t
S(c6) = _i/d x1d*xy (YapiDEag(x1 — x2)vep) W5 (x1)Wp (x2)1 4 (x1)1c (x2), (4.199)

corresponding to the process eTe™ — eTe™ (positron Meller scattering).

(2 2)
b c

The different contributions to S ( ; and SE ) are all examples of tree-level diagrams, e.g.,

diagrams with no loops.
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Figure 4.16: Feynman diagrams contributing to Compton scattering.

4.8.1 Example: Compton scattering

We now have to see what happens when applying each term of the 5$(2) scattering matrix
to the appropriate initial and final states. Let us consider the case of electron Compton
scattering. The initial and final states are in this case

‘Z> = a;i(qi)cii(ki)|0>/ <f| = <O‘Csf(kf)ll)\f(qu>. (4.200)

To compute the result of acting with the SE‘Z% matrix we need to insert the expressions of
the fields and of the propagator. Without repeating all the steps, we already know that we
can use the commutation or anticommutation rules for the ladder operators and identify
the only nonvanishing contributions, i.e., the ones where the momenta and spins of the
field operators correspond to the momenta and fields of the external particles. We obtain

(IS li) = =€ [ dindtza s (ky) et ye (g

" / d*k i (f+ m)e kba—x)
(2m)* (k2 — m? + ie)

Yueh (i)™ ug,(k;) e~

d*k . ,
- _ 2 N 44 4 —l(k,-—l—q,-—k)xz —l(k—kf—qf)xl
e /(271)4dx1d Xy e e

x its, (kr) vver) (4y) (kzi Ek m+2 T—)ie) Yueh (4:) us, ()
4
- 5734 (2r)*5(k; + g; — K) (270)5(k — k7 — )
ity ) 1263 0) s ey Yuh () s )
= (27)*6(ki +q; —kf —q5)

i(k+m)

45
2
X (—e
( ) k2 —m2 + 16) kekita;

iy k) 1 ay) Yueh () us, (k). (4.201)
Also in this case, conservation of momentum holds true, not only for the sum of the initial
and final momenta, but also at each interaction vertex separately.

As for the first-order case, we can identify the Feynman amplitude, which can be di-
rectly obtained by drawing the Feynman diagram of Fig. 4.16 (b1) and applying Feynman
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rules. To the ones already described before we have to add the rule for the fermion prop-
agator

. . L t— i(k+m)
Fermion propagator: k = R — (4.202)

The expression for the Feynman amplitude turns out to be

i(f+m)

2 2 /
k2 —m +1€) k=ki+q;

iM 1) = —e s, (ky) vvex, (q5) ( Yueh (q:) us; (ki) (4.203)

The scattering matrix term S ;) is very similar to the previous calculation, except for
the fact that the incoming and outgoing photon are attached to different vertices. This
in turn changes how the momentum flowing in the propagator is fixed by momentum
conservation. From the Feynman diagram of Fig. 4.16 (b2), we can directly obtain

i(f+m)
k2 — m? + ie)

iM(bZ) = —¢? Hsf (kf) VveXi(qi) ( Vuef\;L(EIf) usi(ki)- (4.204)

k=ki—qs

Compton scattering by positron (terms S ;3) and S(p4)) behave in a very similar way,
except for the overall sign that has to be reversed due to the inversion of fermion fields, as
shown in Eq. (4.191). This overall sign is however irrelevant in the calculation of physical
observables.

A remark on gauge invariance and unphysical polarization states is in order here.
In the above expressions, we should consider only physical photon polarization states.
However, it is possible to show that unphysical states give a vanishing contribution. Re-
membering Eq. (3.262), we need to check that no contribution arises if we replace either
or both ej‘\}/(q f) — qy and Gi(%‘) — gi. Let us check in fact what happens if we do the

first replacement. We need to use the following identities

ki+aqi=ke+ap,  dekp = —Kedy +2ke-qp,  ulkp)(kp—m)=0.  (4.205)

to obtain

| B i (ks +dq5+m)
My = —¢* Ty (ky) (ZI:f'qfva ie) i () () (4.206)

= —e? a5, (kp)ér (i) us; (ki)

The amplitude does not vanish by itself, however we still have to sum it to the contribu-
tion (b2). Using

deki = —kidr + 2k - q5, (ki — m)u(k;) = 0. (4.207)
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we obtain

i(ki—dr+m)
—Zki'(]f+i€

iM 0y = —€* Ts, (ky) vveX. (4:) (

= & s, (kg)éa,(gi) us; (ki)

Therefore, we can conclude that in this process contributions from unphysical polariza-
tion states cancel in the sum of the amplitudes. This is a specific example of Ward’s
identity.

- (k).
) A s, (ki) (4.208)

4.8.2 Relation to time-ordered perturbation theory [optional]

In Eq. (4.201) we obtained that four-momentum is conserved at each vertex. It is inter-
esting to note that this depends on the fact that we used the propagator in its manifestly
covariant form, Eq. (4.115). Suppose we use the time-ordered version of Eq. (4.114), which
is equivalent to integrating the scattering matrix expression over the k” variable. We ob-
tain

(FISi) li) = —¢2 / dhxydty s, (kp) €11y (qp)eM10(t — tp) e er(lit)

d®k
8 / (271)32wy, (f +m) KO=cwy

_ 62 /d4x1d4x2 ﬁsf (kf) Elkfxl')/vej\}/(l]f)equxla(tz _ tl) e—iwk(l’z—tl)

4k
8 / (271)32wy (=k+m)

—

eI e (gi)e 2 ug, (k) e

eyl (an)e M g, (ki) e

(4.209)

kozwk

To keep the discussion short, let us focus only on the first term. Let us write explicitly
the time and three-vector components of each four-vector, then integrate over the space
components of x; and x, and finally integrate over the space components of k:

S(Z) N2 d3k At d3 dt d3 fi(wki+wqi7wk)t2 i(Ei-l-E_fi—%)-J_C‘z
(f] (b1)|1> e G, x1dtad xp e e

W o kT W wap )t (K= gy) 0(t1 — t2)
< () Yo ) (0 — R m) el ) s () + .

d°k ; " S
_ — 2 - _l(wki+qu—wk)t2 33 . =
e /(2%)32wk dtidty e (271)°8° (ki + 4; — k)

S A ULLO PR ST kr—q5) 0(t1 — 1)
x T1s, (Kg) yves! () (wiy® — k-7 +m) vueh (3i) us (k) + ..
— —e?(2m)°8% (ki + §; — Ky — ) / dtydty e/t
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X efi(wkfwkfquf)tl Q(tl i tz)

0 7 =
S ey /o (WY —k-y+m
< 1 () o (7 )

Zwk E:E,- +7

(4.210)
We are still left with the two integrations over the time components of x; and x;. In the
covariant calculation, these two integrations where done before the k¥ integration and

led to the conservation of energy at each vertex of the diagram. Here, it is convenient to
perform the change of variable t; = t + t:

(FISEIE) = )8 s+ s — Ky — ) [ et ey engiag il mang )

—_ 7 *V (= (kaO_ET/ﬁ—m)
x 0(1) s, (kr) vver (77) 2wr

vl (@) us (k) +
k=ki+q;
(4.211)

The t; integration corresponds to the Fourier transform of a constant, giving us a delta
function:

/dtz e—i(wki-l-wﬁi_él)kf_wﬂf)tz =278 (wy, + wy, — Wy, — wqf), (4.212)

and a Fourier transform of a step function that gives us (considering already that the
previous delta function implies wy, + wy, = wy ;T Wy f)
—1i

/ dt e~ i@ wy—wi)t gy — _ (4.213)
(W — wy, — wy;) — i€

The last equality can be checked by anti-Fourier transforming and using Cauchy’s theo-
rem.

In conclusion, reinserting explicitly the contribution from the second time-ordered
diagram, we obtain the following expression

(FIS0oy) |iy = (2)*6* (ki + s — Ky — ) 2

_ v i(kaO —E'77+m)
X (usf(kf) Yve)\f (le) 2wy (wy — Wy, — Wy, — i€)

i(wy® —k-y—m)
2wy (W + wy, + wy; —i€)

it (k) v (45)

-

k=—(ki+7;)
(4.214)

Comparing this last result with the expression in Eq. (4.201) we can highlight similar-
ities and differences between the “covariant” version and the “time-ordered” version of
the calculation. They are equivalent, but can be given different interpretations.
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Figure 4.17: Time-ordered Feynman diagrams contributing to Compton scattering in the s-channel. Their
sum corresponds to Fig. 4.16 b1. (Spin and polarization indices are not written.)

In both cases, the total four-momentum is conserved.

In the covariant treatment, Eq. (4.201), energy and momentum are conserved at each
vertex, but the intermediate state is off-shell, i.e., it is a virtual particle with KO £ wy. In
fact, as we have shown for the first-order calculations, it would be impossible to guarantee
four-momentum conservation at each vertex with on-shell particles. Note that, due to
the denominator of the propagator, particles with higher virtuality contribute less to the
amplitude.

In the time-ordered treatment, Eq. (4.214), all the contributions from all possible ways
to order the vertices have to be taken into considerations. With n vertices, there are n!
possible time-ordered diagrams. In this example there are only two, depicted in Fig. 4.17.
The left panel shows a process where an electron absorbs a photon and radiates a photon
at a later time. The right panel shows a process where an electron, a positron, and a
photon are produced from the vacuum and at a later time the positron annihilates by
combining with an electron and a photon.

Finally, in the time-ordered treatment the intermediate state is an on-shell particle or
antiparticle (both states contribute) with k¥ = wy, but energy is not conserved at each vertex.
There is a violation of energy-conservation, but only for the intermediate states. Note
that, due to the denominator of the propagator, contributions with a larger violation of
energy conservation are less relevant.

4.8.3 Example: Moller scattering

Let us see another example for illustration purposes, without repeating all the calcula-
tions. Let us consider the term S(5) corresponding to Meller scattering, i.e.,

e? _ — —
5@ = - / d4x1d4xy (VS iDEap(x1 — 1) Ve ) WA (1) (x2) W) (1) (x2). (4.215)
The initial and final states are

i) = el (ki)el. (p)]0), (f| = (Ocs; (kp)er, (py)- (4.216)
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When acting, for instance, with the 1™ (x;) field, there are two possibilities: we can de-
stroy the electron with momentum p; or the one with momentum k;. The same happens
with the final-state electrons. There are in total four possibilities, but only two of them
are distinct. Two of them are connected by the interchange of the integration variables x;
and x, and simply combine together to get rid of the 2! denominator. The corresponding
two Feynman diagrams are depicted in Fig. 4.18.

(m1) (m2)

Figure 4.18: Feynman diagrams contributing to Meller scattering.

The two distinct possibilities lead to these final results

. _ —iQuy _ N

iMu) = —¢? s, (kg)y*us, (ki) @ +ie) f_”le) - ey (p )y ur (i), (4.217)
g=ki—Kg

. — _l v _ v

ZM(mZ) = +¢ urf(Pf)Y”usj(ki) ﬁ ki usf(kf)y ur, (pi)- (4.218)

The difference in sign is very important: it is due to the switching of the two final-state
fermion fields and it is an example of what was discussed at the end of the previous
section (i.e., the fact that only the relative sign between two contributions to the same

process matter, and it can be fixed by checking if there is an interchange of two fermion
fields).

4,9 Cross section calculations

We resort to scattering experiments to test the behavior of our theory and the outcome
of the calculations of the scattering matrix. Usually, two beams of particles are made
to collide, or a beam is scattered off a target. The observable quantity is the number of
events in the detector (Ney). This quantity depends however on the characteristics of the
experiment: intensity of the beam, density of the target, relative velocity, efficiency, etc.
These parameters define the so-called “luminosity” (£) of the experiment. The luminosity
can be formally defined as the number of incident particles (Njn.) per unit surface (S)
times the number of scattering centers (Ncen) and has the dimensions of [L] 72, or [M]? in
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natural units.* The number of scattering events is related to the product of the luminosity
times the cross section. The cross section can be defined as

Nev — Nev
L Ninc I\]cen/S

o= (4.219)

therefore an observable quantity (number of events/luminosity), which is characteristic
of the process under consideration and independent of the specific experiment where the
process is measured.

A discussion of how the cross section is connected to the scattering matrix and the
Feynman amplitude is presented, e.g., in Sec. 4.5 of Peskin—-Schroeder, in Sec. 8.1 of
Mandl-Shaw, in Sec. 4.3 of Halzen-Martin. Here, we consider only the outcome of the
discussion.

Consider a process where two particles A and B scatter and produce a certain number
of final-state particles n. The general formula expressing the relation between a differen-
tial cross section and the S matrix is

1 d?
do = |IM|? Hi (27)46* (pa + p5 —Yps)| (4220

4/ (pa- pp)? = mim} 7 (2m)°2Es

The denominator of the first term is often called the flux factor, since it is connected to the
flux of particles impinging on a target. The formula is valid in any frame where the two
initial particles are collinear.

The final part of the cross-section formula (from the product symbol) is called the
Lorentz-invariant phase space (LIPS). Using four-momentum conservation we can sim-
plify the phase-space factors. The starting formula is differential in the 3n components
of the n final-state momenta. However, we have four conditions coming from the con-
servation of four-momentum, which means that in the end the cross section can be kept
differential in only 3n — 4 variables. The choice of which variables to consider depends
on taste and, of course, on the need to compare to specific experimental measurements.

We will consider in our calculations only 2 — 2 processes. Therefore, we can keep the
cross section differential in two variables. A common choice are the azimuthal and polar
angles of one of the outgoing particles. We can therefore use the delta of conservation of
momentum to fix the three-momentum of one of the outgoing particles and the modulus

“Normally, the luminosity is actually determined using a process whose cross-section is very well known
and dividing the number of events by the cross section.
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of the momentum of the other particle.

d3PC ngD 444
(271)32E¢ (271)32Ep (2m)°8(pa + s = pc = pp)
dgpc d3PD

= 43 (= - S S 1 . .
= 2k ary2Ep (2 (Pat P —Pc—Pp)8(Ea+Ep — Ec — Ep)

_ |fclPdlpclae 1
(27‘[)32EC 2ED
|Pc|?dQ  |9(Ec + Ep)
(271)22EC2ED a|ﬁc|

(27‘()5<EA + EB - EC — ED)

Pa+Pp=pPc+Pp
-1

pA+pPB=pc+pPD
(4.221)

In the last step, we used the properties of the delta function to change from a delta func-
tion expressed in terms of Ec + Ep to an expression in terms of |pc|.
Center-of-mass frame

The two most commonly used frames of reference are the center-of-mass frame (CMF)
and the target rest frame (TRF). In the former, we can write the momenta of the two
initial particles as

CMF S CMF .
pa = (Ea, 0, 0, |Pal), pg = (Eg, 0, 0, —|pal) (4.222)
with Exy = \/|Px|? + m2. Therefore
CMF . .
(pa-pp)* —mumy = EZEG + |Pal* + 2EAEp|fal® — mim3

= (1Pl +m%) (IPal® +m%) + |Pal* + 2EAEp|pal* — mym3
= [Bal* + |Pal? (m% + m3) + |Pal* + 2EaEp|Pal?

= |Pal* (2P al? + m’ + mf + 2EAEp)

= |Pal*(E4 + E3 + 2E4Eg) = |pal?(Ea + E5)”.

(4.223)
The flux factor can be written of course in terms of other variables.
For what concerns the phase space, we need to write
CMEF o S . -
pc = (Ec, |pclsin@cos¢, |pc|sinbOsing, |pc|cosoh), (4.224)
PD F (Ep, —|Pc|sinfcosd, —|pc|sinOsing, —|pc|cosb), (4.225)

with Ec = /|Pc|? + mZ% and similarly for Ejp. We obtain

a(EE;I;rCfD) _ a|;2'c\ (\/!ﬁc\2+m%+ \/\ﬁc]2+m7f)> — \fg’c](E_c 1 5) (4.226)
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Putting everything together we arrive at the following compact formula for a AB —
CD scattering in the CMF

1 2 |PclfdQ 1  EcEp
41pal(Ea+ Ep) (27)?2Ec2Ep |pc| Ec +Ep

aQ p
— - ’EC‘ |M|2
6472(E4 + Eg)” |Pal

do

(4.227)

Particularly simple is the case when all four particles have the same mass (including
when all masses are neglected). Under these conditions, we have E;, = Egp = E and
|Pc| = |Pa|- The formula reduces to

aQ 5 .
do = CAPAE? M| if mg = my, = me = my. (4.228)

Target rest-frame

Let us analyze the formula in the target rest frame. For the calculation of the flux factor,
we have

TRF

pa = (Ea, 0, 0, |Fla), ps = (ms, 0, 0, 0) (EA:\/|ﬁ|i+m124> (4.229)

(although we use the same notation, E 4 and p4 are obviously different in the CMF and
in the TRF). Therefore

(pa-pp)® —mamy = E3md — mim3 = |p|>m3. (4.230)

For the calculation of the phase space, for convenience let us neglect m 4 and m¢ and
set mp = mp. We have

pc = (|pc| |Pc|sinfcosd, |Pc|sinbsing, |pc|cosb), (4.231)
TRF(

pp = (Ep, |Pp|sinépcose, |pp|sinbpsing, |pp|cosbp), (4.232)

with Ep = /|Pp|? + m3,. Conservation of three-momentum requires

|Pp|sinfp = —|pc|sinb, |Pp|cosOp = E4 — |Pc| cos 0. (4.233)
Squaring and summing the above:
[Ppl* = [Pcl® + E4 — 2Ealpc| cos 6 (4234)

from which

Ep = \/Iﬁc|2+E124—2EA|ﬁc|c059+m%. (4.235)



4.9 Cross section calculations

149

We can then write

a(Ec+ED) _ 0
d|pc] d|pc
— 14

<|ﬁc| + \/|ﬁc!2+Ei —2EA|ﬁc|c059+m12)>
|Pc| — Eacos6 _ ., [Pl =Eacoso (4.236)
JIPcl? + B4 — 2Ealjic] cos 0 + m, Ep

Conservation of energy implies (it takes some steps to prove it)

4 |ﬁc| —EACOSQ _ mBEA

= 4237
Ep |Pc|Ep ( )

EA—l—mB—“_jc‘:ED =

In conclusion, a compact formula fora AB — CD scattering in the TRF, neglecting the
mass of particles A and C is (keeping in mind that E4 = | 4| and Ec = |pc|)

- 12 -
do = _’1 |M|2 |PC| dQ |pC|ED

4 m 2m)22E~2Ep mgE

|Palmp ) (2m) c<Lp MBLA (4.238)
adQ EC |/\/l|2

647r2mB E2 '

4.9.1 Mandelstam variables

In AB — CD processes, it is often useful to introduce the Lorentz invariants

s=(pa+pp)®=(pc+pp)> =my+ms+2pa-pp=mg+mp+2pc-pp, (4239
= (pa—pc)* = (pp— pp)* = m% + mg —2pa - pc = mz+mp —2pg - pp, (4.240)
u=(pa—pp)* = (pp—pc)* =my+mp—2pa-pp =mp+ms—2pp-pc. (4241)

The Mandelstam variables are not independent

s+ t+u = 3m% +my+mg +mp+2pa- (pp— pc — Pp) (4242)
:3m§+m%+mé+mZD—2pA-pA:mi+m%+m%+m,23. '

It is useful to express Mandelstam variables in terms of CMF observables, especially

when m4 = mp and mc = mp respectively. Using Eqs. (4.222), (4.224), (4.225) we obtain

s = (Ea +Ep)* = (Ec + Ep)? = 4E?, (4.243)
t = —|pal®> = |pcl* +2|pal|Pc| cos
2 2 (4.244)
2 my +my
— —2F \/ \/1——C059—T),

2 2
U= —2F2 1+\/1__\/1_%C053_WT+2”78) (4.245)
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Particularly useful for our purposes is the case when all particles are massless (ultra-
relativistic approximation), for which we have

s =2pa-pp=2pc-pp = 4E?, (4.246)
t=—2pa-pc = —2pp-pp = —2E*(1 —cos0), (4.247)
U= —2ps-pp = —2pp- pc = —2E*(1 4 cosb), (4.248)

s+t+u=0. (4.249)

4.10 Examples of cross section calculations

Detailed calculations of the cross sections for the basic elementary processes of QED are
presented in the lecture notes of prof. F. Piccinini (available in the library), in Ch. 8 of
Mandl-Shaw, in Ch. 8 of Aitchison-Hey, Ch. 5 of Peskin-Schroeder.

4.10.1 Examplel:ete — putpu~

Fig. 4.19 shows the Feynman diagram for the process under consideration at order «.
This is the leading order diagram for this process, because there is no contribution at order
e (i.e., order \/a). This is also a tree-level diagram, because it contains no loops. Finally,
this is also called a s channel diagram, because the momentum squared flowing into the
intermediate propagator is equal to the Mandelstam variable s.

p- k_

e (s-) 2o (ro)
PRI

e’ (s+) ph(rs)

Figure 4.19: Feynman diagram for the process ete™ — utpu~.

Using Feynman rules, we can immediately write the corresponding Feynman ampli-

tude
. — i ghe —
iM= e? Ve, (p—&-))/ﬁue,sf (P—) 2g— Um,r_ (k—)yocvm,hr (k+) (4.250)
(% +ie) lg—p, +p-
and its complex conjugate
. _ gk —
—iM* = —¢? Om,ry (k4 )Vptim,r_ (k-) 2g— Ues (P—)YoUes, (p+). (4.251)
(4% —i€) lg=p.+p-
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The modulus squared of the amplitude is (the dependence on spin and momenta is
temporarily dropped for convenience)

S

|M‘2 = <6e+'yrxue*> (ﬁm*‘y(xvm+) (5m+‘)/0um7> (ﬁe*‘y(fveﬁ)

(4.252)

(nN| o (nN| [

(ﬁe— YoUe+ ) <5e+ Yalle- ) <Hm— Vavm*‘ ) <5m+ yaum— ) .

In the last step, we made use of the fact that each term in parenthesis is a Dirac scalar
and we are allowed to move it in a different position. Moreover, if we write explicitly
the Dirac indices we are free to rearrange all terms and move the spinors in order to
reconstruct structures like u1 and v0 and

'S

(M? = 2 (e-) £ (Vo) pr (ver Do) pg (Yar) gy (e )

X (tm-) A (r") AB (Um+Tm+) BC (r7) cD (tm-) D

€ — —
T2 (vo) pp (Ve Tet ) p (Var) gy (te-The) g

X (')/[X) AB (Um+5m+)BC (‘)/G) cD (umfﬁmf ) DA
4
- z_zTr [YU Vet Vet Va l/le—ﬂe_} Tr [Y(X Um+Om+ ¥’ ”m—ﬂm_} .

(4.253)

Note that we reduced the expression to a contraction of two Lorentz tensors, one referring
to the electron-positron side and one referring to the muon-antimuon side. Each one of
these tensors, called leptonic tensor, is written as a trace of a product of Dirac matrices in
the Dirac space of the electron and of the muon fields, respectively.

We choose not to consider the polarization of the external particles: we average over
initial state and sum over final state polarization. We obtain

%S+/S;+,r M2 = % Tr [7/0 <§ve+5e+>mx (;ue_ﬂe_ﬂ
x Tr [)/"‘ (va+5m+> el (Zum_ﬁm_>]
"~

T+

(4.254)
4

= Ty (B —me) ve (5 +me)]

x Tr {y"‘ (ks —mm) v (k- + mm)]
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After the calculation of the traces, we obtain

1 et
1 Z ’MIZ T 42 4 [P*UPJHX + proP—a— (P P+)Soa — mggrm]

spin

X4 RTRE - RTKE — (k- k)™ — g™

464 _
264 _
= =5 [2(p- -ko)2(ps ko) +2(p- ko )2py ki) 4
40 2 2
:Ziz u2+t2+...} ~ 327202 X Jgt .
S B S

From the second step, we neglected the masses of the electron and of the muon. This is a
good approximation if s is much larger than .

® JADE@PETRA
CELLO@PETRA
102} CELLO@PETRA
A TASSO@PETRA
¥ DASP@DORIS
O  ALEPH@LEP
10¢ SND@VEPP-2M

o[nb]

10-1,

10-2,

\/; [GeV]

Figure 4.20: Experimental data for the total cross section of the process ete™ — pu"mu~ compared with
Eq. (4.258). Data are available online at https: //www. hepdata. net/ and are from the following ex-
periments: DASP@DORIS [12], CELLO@PETRA [9, 10], JADE@PETRA [8], TASSO@PETRA [13],
ALEPH@LEP [5], SND@VEPP-2M [2].

To write the cross section, we express the Mandelstam invariants in terms of the CMS
polar angle

2412 1 1 1
% = 1(1 +cos )2 + Z(l —cos0)*+ = 5(1 + cos? 0) (4.256)

Replacing into Eq. (4.228) we obtain the differential cross section

do o?
dQ  4s

(1+ cos?6). (4.257)
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p
e (s1) ~ ol Y(A1)

(t) (u)
Figure 4.21: Feynman diagrams contributing to the process e et — yy.

This differential cross section can be integrated over cos 8 to give

o 47r0?
3

(4.258)

The result for the cross section can be compared with experimental measurements
from colliders operating at different values of the C.M.F. energy, /s, shown in Fig. 4.20.
The agreement is excellent.

4.10.2 Example2: ete” — yy

Here we consider an example that is not included in Piccinini’s notes: the process ete™ —
vy. There are two “channels” for this process. The relevant Feynman diagrams are de-
picted in Fig. 4.21. The Feynman amplitudes for the two channels are

iMgy = e%@ﬁn%@ﬁ“h_zi@hwm%%WO%@m (4.259)
. . 2 — * L l(k ”1) *V 4260
iMy = —e" s, (p2) Yu€y, (q1) (k2 — 2 + ie) A Yvex, (92) s, (p1)- (4.260)

The first diagram is called a t-channel diagram, since the momentum k flowing in the
propagator fulfills k* = t. The second diagram is called a u-channel diagram, since in this
case k> = u. The two amplitudes have the same sign, because they are connected by an
exchange of bosonic fields.

The complex-conjugate amplitudes are

i(f+m)

—iM{;) = e* s, (p1) ¢, (91) (@ —m2—ic) |y o, #1,(q2) vs,(p2), (4.261)
SIMy = i (1) éa(2) p ) (i) valpy).  (4262)
(1) s1\P1) €, (42 (kz—mz—ie) A A \q1) Us,(P2)- .

We do not consider the polarization of the external particles: we average over initial
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state and sum over final state polarization. We obtain

411 ) |/\/l|2:1 Y <|Mt|2+MfM;+MMM;‘+|Mu|2). (4.263)

$1,82,A1,A2 51,52,A1,A2

We start analyzing the first term. First of all, we turn the product of Dirac spinors and
matrices into a trace of Dirac matrices, similarly to what we have done in Eq. (4.68). To
follow this step, we consider the Dirac structure of the scattering amplitude and write
explicitly the Dirac indices

Ty (p2) (¢5,(02) (B — o +m) €3, (a0) ) wsis(p1)
< Tc(pr) (én () (1 — dh+m) én,(32))
= 0,0(p2)T,(p2) (£3,(02) (1 — dh +m) 63, (q1)) | us,n(p1)
< Tc(pr) (¢ () (1 — dh+m) én,(32))
= Tr |01, (12)0, (P2)¢5, (42) (B2 — 1+ m) 63, (1) s, (p1)
X its; (p1) ¢, (1) (B =y + m) 2, (02) |

Inserting this result into the t-channel squared amplitude we obtain

UszD(pZ)

(4.264)

64
7 L M= ﬁél )3 TY[ZUSZ P2)Ts,(P2) €3, (02) (1 — dhr +m)

S A ( - mz) AA 52

X 63, 01) X sy (P17, (P1)ér, (01) (1 = + ) ¢, (42)]
4
= Wk Y (q2)eh (42 Z% q1)€x, (1)
X Tt (2 = m) V(1 — iy +m)va(pr + m)va(pr — o + m)vg)

In the second step, we made use of the definition of positive and negative energy pro-
jectors, Egs. (2.255) and (2.256).° At this point, we have to worry about the summation
over photon polarizations. In principle, we should consider here only physical polariza-
tion states of the photon, i.e., use the expression in Eq. (3.260). However, we can check
that the addition of unphysical states is irrelevant in the sum M ;) + M,), with similar
steps as discussed for Compton scattering in Sec. 4.8.1. This is another example of the
application of Ward’s identity. Because of this, we can replace

(4.265)

Z - [ (4.266)

Note that Piccinini and Mandl-Shaw have different conventions concerning the normalization of
spinors, leading to a 1/2m factor in the projectors.



4.10 Examples of cross section calculations 155

Using the above replacement, we can write

};ZA Mif? = ﬁn[(;@ = )Y (1 — i+ m)yalp+m) v — o+ m)vg)
— ﬁﬁ[(—%ﬁz +4m) (P — g1 +m)(=2¢1 + 4m)(p1 — 41 + m)] _

(4.267)

In the second step we made use of property (2.80). To simplify the calculations, from now
on we neglect particle masses and obtain

4
% XA: Myf? ~ i_z Tr [?2(1751 —d)p (P - 971)]
4
= %_4 [2<P2 -(p1 - bh)) (Pl ~(p1 - fh)) —(p2- Pl)((Pl —q1) - (p1 - cﬁ)ﬂ
64
= 25| = (2p2- p1)(2p1-q1) + (2p2-q)(2p1 - 01) = 2p2- p1 (p1 — 11)?]
= Zi—j(st + ut —st) = 264%.

(4.268)

Similar calculations yield (it is sufficient to replace g1 — g, in the t-channel calcula-
tions)

1 t
ZZLMﬁ%%%. (4.269)

The interference terms are a bit more complex:

i L MM=07 T o) PR g ) ) )
(1 — g2+ m)
X ¢, (q2) 4 (4~ i) ér (1) vs,(p2) W)
e

x Tr [(;ﬁz —m)Y* (1 — g1 + m)VP (1 + m)va(p1 — 2 + m)Vﬂ]

To simplify the trace, we make use of Egs. (2.82) followed by (2.81). Neglecting masses
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from now on

1 , et
ZS;{“MfMu R mTr[ = 2p2p1vP (B — 1) (1 — 412)7’/3]
o
— —— 8(p; - — ) - (pr —
tff (p1-p2)((pr—01) - (p1— 32)) (4.271)
e
= =1 22p1-p2) (= 2p1-42) = 2p1- 1) + (241 - 42))
o
= —25 s(u+t+s)=0.
The final result for the squared scattering matrix is
Loy mp ot (3 + 3) = 32722 (ﬁ + f). (4.272)
4. .5, t u t u
152,741,742

Writing Mandelstam variables in terms of CMS angles and replacing into Eq. (4.228) we
obtain the differential cross section

do _ a® (14+cos?8\ o (1+cos®0
dQ  4E? '

= (4.273)

sin? 0 sin? 0

We can test the validity of this (lowest order) QED calculation against experimental
data. Fig. 4.22 shows results from four experiments at different values of s. The agreement
is very good (x?/d.o.f. = 1.2, without taking into account systematic errors).

411 Conclusions

In this chapter we have considered interactions between different fields. We reviewed
the concept of a scattering matrix and its expansion in terms of the interaction coupling
constant. We have seen how to compute the scattering matrix at the lowest order in
the coupling constant and how to relate it to cross sections, which are experimentally
measurable.

Typical questions that can come out during the exam:

1. Derive and discuss the QED Lagrangian;
Derive Wick’s theorem for a product of two field operators;

Compute any of the Feynman propagators discussed in the lectures;

L

Obtain an expression of the scattering matrix for QED at order e for some initial or
final state and discuss the relation with Feynman rules;

5. Obtain an expression of the scattering matrix for QED at order e? for some initial or
final state and discuss the relation with Feynman rules.
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Figure 4.22: Experimental data for the process eTe~ — yy compared with Eq. (4.273). Data are available
online at https: //www. hepdata. net/ and are from the following experiments: JADE@PETRA [7],

HSR@SLAC [14], MAC@SLAC [19], L3@LEP [1].
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