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“No sensible man would insist that these

things are as I have described them.”

Plato, Dialogues, Phaedo
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1

Introduction

This lecture notes are for the Quantum Electrodynamics course of the University of Pavia.

This course represents the first introduction to the topic of Quantum Field Theory. It is a

one-semester course and it is meant to be followed by a second course on Quantum Field

Theory.

Why do we need a Quantum Field Theory? The goal is to have a theory that is compat-

ible both with Special Relativity and Quantum Mechanics, i.e., a theory for “Relativistic

Quantum Mechanics.” It turns out that this requires the use of a field theory. In such a

theory, the “particles” are identified with oscillations of a field.

Classical nonrel.

particles

Classical rel.

particles

Quantum nonrel.

particles

Quantum rel.

particles

Classical nonrel.

fields

Classical rel.

fields

Quantum nonrel.

fields

Quantum rel.

fields

The “problem” of merging Quantum Mechanics and Special Relativity can be intu-

itively seen in the following way. Consider a state with a measurable lifetime ∆τ and a

measurable energy. The standard deviation of the energy of the state can be related to its
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lifetime via Heisenberg principle.1

∆E∆τ ≥ h̄/2. (1.1)

This relation can be interpreted by saying that a state with extremely short lifetime can

have an extremely large energy dispersion. For time intervals of the order of h̄/(4mec
2) ≈

10−22 s, the energy uncertainty can be as large as the rest energy of an electron and a

positron. This opens up the possibility that a state composed by an electron and a positron

is created out of nothing, as long as it decays in a short-enough time. Thus, the vacuum is

not really empty. Most of this relentless activity in the vacuum has no measurable effect.

However, it has to be taken into account when we carry out high-precision experiments

at subatomic level.

Nowadays, it is common wisdom that particles can be created out of energy. By collid-

ing an electron and a positron at high energies, we can produce all sorts of other particles,

including Higgs bosons. However, it is not possible to describe this process within par-

ticle mechanics, because in this case particles are considered to be there in the first place,

they cannot be created nor destroyed. A similar problem occurs with spontaneous emis-

sion of photons from atoms. Richard Feynman told this story about this problem:

My father once asked me: “I understand that they say that light is emitted

from an atom when it goes from one state to another, from an excited state to

a state of lower energy.”

I said, “That’s right.”

“And light is a kind of particle, a photon, I think they call it.”

“Yes.”

“So if the photon comes out of the atom when it goes from the excited to the

lower state, the photon must have been in the atom in the excited state.”

I said, “Well, no.”

He said, “Well, how do you look at it so you can think of a particle photon

coming out without it having been in there in the excited state?”

I thought a few minutes, and I said, “I’m sorry; I don’t know. I can’t explain it

to you.”

He was very disappointed after all these years and years of trying to teach me

something, that it came out with such poor results.

This anecdote tells you how difficult can be to discuss the creation and annihilation

process with the language of “particles.” The situation is more flexible with field oscil-

lations: they can be created or suppressed, corresponding to the creation or destruction

of particles. The electromagnetic field serves as a good example: we are not so suprised

about the fact that electromagnetic radiation can be absorbed or created by atomic transi-

tions. In fact, it turns out that the calculation of the coefficients of absorption, spontaneous

1Note that this is not a relation between energy and external time, but between energy and the lifetime

of the state
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emission and stimulated emission can be carried out within quantum field theory without

resorting to any extra assumption (see discussion in Sec. 1.2 and 1.3 of [31]).

From nonrelativistic classical particle mechanics, we know how to obtain nonrelati-

vistic quantum particle mechanics and also relativistic classical particle mechanics. We

will try to build a theory of relativistic quantum particle mechanics, but encounter some

problems. The first part of the course will be devoted to this.

We can turn for inspiration to the description of the ElectroMagnetic (EM) field. It is a

classical field theory that is from the beginning relativistic. It turns out that it is possible

to quantize this theory, thereby obtaining a theory which is relativistic and quantistic,

containing field quanta that can be identified with “particles” (photons). When the EM

field interacts with particles at the atomic level, but whose momenta are not large, it is

still possible to treat the EM field as a quantized field and the particles as nonrelativistic

quantum particles: this is the approach of Quantum Optics. But the ideas underpinning

the quantization of EM fields can be applied also to fields of different types. Their field

quanta can be identified with other particles. In this approach, particles are like ripples

in fields that fill the whole space. The second part of the course will then be devoted to

understanding relativistic classical field theories and how to quantize them.

The conceptual steps of field quantization are needed just to describe free particles, i.e.,

free fields. But we want of course also to be able to describe the interaction of different

particles/fields. We are going to study scattering processes, where we assume that we

start from an initial state consisting of free fields, the fields then undergo an interaction

and end up into a final state again consisting of free fields. A classical analogy may

be when a sound wave hits a membrane, it is partially reflected and partially absorbed

giving origin to a vibration of the membrane.

In a scattering process we always start with some particle (i.e., some excitation of the

fields) and end up with some other particles, after some interaction has occurred. The

strength of the interaction is determined by the “coupling constant.” In principle, the

particles can interact (infinitely) many times, but if the coupling constant is small, we can

expand the computation in a perturbative series and stop at a certain number of inter-

actions. For instance, in QED we have the coupling constant (in rationalized Gaussian

units, also called Lorentz-Heaviside units)

α =
e2

4πh̄c
≈ 1

137
. (1.2)

It makes then sense to stop the calculation at the lowest order in α, since the corrections

will be of the order of 1%. For highly precise computations and/or for theories where the

coupling constant is larger it is essential to go beyond.

The contributions to the scattering at a given order of the coupling constant can be

conveniently described by the so-called “Feynman diagrams.” For instance, if we want

to compute the scattering of a photon and an electron (Compton scattering), we have to

take into consideration diagrams of the type depicted in Fig. 1.1.
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√

α

√

α

Figure 1.1: Feynman diagrams contributing to the process of photon-electron scattering (Compton scat-

tering). The first two diagrams represent two different “time-ordered” contributions to the same Feynman

diagram.

In this course, we will stop at the lowest order in the coupling constant. We will con-

sider only the so-called “tree-level diagrams” as opposed to diagrams containing loops.

At the end of the course, you should in principle have the tools to compute any tree-level

diagram in QED and other theories.

For loop diagrams and all the fundamental issues related to them, you should attend

the Quantum Field Theory course in the second semester.

QED is probably the theory that has been tested to the highest accuracy in exper-

iments. For instance, the theoretical computation of the electron anomalous magnetic

moment agrees with the experimental measurement at the 10−9 level. However, to reach

this kind of precision QED calculations have to be carried out to order α4, involving 891

Feynman diagrams [24] (calculations reaching orderα5 have also been performed [4]). By

the end of the Quantum Field Theory course, you will be able to compute the orderα cor-

rection and reach an agreement with the experimental value of within a few percents [35].

ae

(

O(α)
)

= 0.00116 (1.3)

ae

(

O(α4)
)

= 0.0011596521817(8) (1.4)

ae|exp = 0.00115965218091(26) (1.5)

Most of the applications of Quantum Field Theory have to do with Elementary Particle

Physics, i.e., the study of what we at present consider the fundamental constituents of

matter. It is ironic that what we call “Particle Physics” is based on the notion that particles

do not exist, but have to be replaced by field excitations! Carlo Rovelli uses these inspiring

words to describe the world of quantum field theory, in his book “Seven brief lessons on

Physics”

Just as the calmest sea looked at closely sways and trembles, however

slightly, so the fields that form the world are subject to minute fluctuations.

[...]

We have arrived very far from the mechanical world of Newton and Laplace,

where minute cold stones eternally travelled on long precise trajectories in

geometrically immutable space. Quantum mechanics and experiments with

particles have taught us that the world is a continuous, restless swarming of

things; a continuous coming to light and disappearance of ephemeral entities.

A set of vibrations, as in the switched-on hippy world of the 1960s. A world

of happenings, not of things.
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However, the ideas of field quantization can be used also to study nonrelativistic

quantum many-body systems, which are extremely important also in Solid State Physics.

1.1 Recommended resources

As with all courses at the M.Sc. level, you are encouraged to look at more than one refer-

ence to gain a deeper knowledge of the subject.

• These lecture notes are largely based on older lecture notes by prof. F. Miglietta

(available in the library).

• The calculations of tree-level QED processes are presented in detail in the lecture

notes of prof. F. Piccinini (available in the library).

• The course basically covers the first eight chapters and App. A of “Quantum Field

Theory” by Mandl and Shaw [26].

• The first part of the course is treated in detail in Ch. 2, 3, 4 of the book by Ryder [29].

• Two recent textbooks on the topic are the ones by Maggiore [25] (more concise) and

Schwartz [31] (more extended).

• The book by Aitchison and Hey [3], Vol. 1, presents similar topics with a pedagogical

and accessible style.

• The book by Peskin and Schroeder [28] has become a “classic” but it is more ad-

vanced and more phenomenology-oriented than the previous ones. In any case, the

first five chapters of the book roughly correspond to what is covered in the present

course.

• The book by Halzen-Martin [21] is lower-level than the previous ones, but it may be

useful to understand the concepts without diving too deep into the theory.

• A classic book, a “bible”, is that by Weinberg [33], difficult but very complete.

• A well-documented history of the birth of Quantum Field Theory can be found in

the book “Inward Bound” by A. Pais [27], in particular Ch. 15.





2

Relativistic wave equations

Qunatum Field Theory textbooks often skip the discussion of relativistic single-particle

equations and start straight from the language of field theory. The discussion is important

not only historically, but also to understand some features of relativistic quantum theo-

ries. It is also the occasion to introduce some technicalities that are anyway needed in the

following chapters. Apart from the lecture notes of prof. Miglietta, the topics covered in

this chapter are treated in a very concise way in App. A of Mandl–Shaw [26] and in Ch. 3

of Peskin–Schroeder [28]. A more extended treatment can be found in Ch. 2 of Ryder [29].

2.1 The Klein–Gordon equation

The Schrödinger equation is one of the “axioms” of Quantum Mechanics and reads

ih̄∂tψ(t,~x) = Hψ(t,~x), (2.1)

where we used the notation ∂t =
∂
∂t .

For a free particle of mass m, we have the nonrelativistic relation

E =
~p2

2m
(2.2)

We can then obtain the Schrödinger equation by the replacement

E→ ih̄∂t ~p→ −ih̄~∇ (2.3)
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leading to

ih̄∂tψ(t,~x) = −
h̄2~∇2

2m
ψ(t,~x). (2.4)

An “obvious” guess to go from a nonrelativistic to relativistic description is to start

from the relation

E2 = m2c4 +~p2c2 (2.5)

The nonrelativistic case is recovered in the limit c→ ∞

E = mc2

√

1 +
~p2

m2c2

c→∞≈ mc2 +
~p2

2m
. (2.6)

Now we use the replacements (2.3)

−∂2
tφ(t,~x) =

(

m2c4

h̄2
− ~∇2c2

)

φ(t,~x)

(

∂2
t

c2
− ~∇2

)

φ(t,~x) = −m2c2

h̄2
φ(t,~x)

(2.7)

and we finally obtain the Klein–Gordon equation

(

∂µ∂µ +µ
2
)

φ(x) = 0 (2.8)

where we made use of relativistic notations and introduced µ = mc/h̄. The function is

called Klein–Gordon, even though at least six authors (including Schrödinger) indepen-

dently stated it in 1926 [27].

2.1.1 Excursus: relativistic notation

A concise discussion of relativistic notation can be found in Sec. 2.1 of Mandl–Shaw [26].

Lorentz transformations include rotations and boosts in all directions. Recall that the

effect of a Lorentz boost in the x direction can be written as

ct′ = γ(ct +β x) (2.9)

x′ = γ(x +β ct) (2.10)

y′ = y (2.11)

z′ = z (2.12)

where γ = 1/
√

1−β2 and β = v/c.

A more convenient notation for our purposes is to write the Lorentz boost in matrix

form
















ct′

x′

y′

z′

















=

















coshǫ sinhǫ 0 0

sinhǫ coshǫ 0 0

0 0 1 0

0 0 0 1

































ct

x

y

z

















(2.13)
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where we introduced the rapidityǫ = ln[γ(1+β)] = ln
√

(1 + v/c)/(1− v/c). Note that

the inverse transformation requires only a sign change of velocity or, equivalently, a sign

change of rapidity.

A Lorentz invariant is

c2t2 − x2 − y2 − z2 = c2t′2 − x′2 − y′2 − z′2. (2.14)

The best way to formally deal with Relativity is to introduce a space of four-vectors

(Minkowski space) with a definition of a scalar product (a metric) that is invariant under

Lorentz transformations. To do this, we need to introduce two types of vectors, connected

by a metric tensor. A (contravariant) four-vector in Minkowski space is denoted as

aµ = (a0, a1, a2, a3) = (a0,~a) (2.15)

The coordinate vector in c.g.s. units would be

xµ = (ct, x, y, z)|c.g.s. (2.16)

In natural units (see next section) it is simply xµ = (t, x, y, z).

The metric tensor is

gµν = gµν =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











. (2.17)

Note that

gµλgλν = δµν . (2.18)

Covariant vectors are

aµ = gµνaν = (a0,−a1,−a2,−a3) = (a0,−~a), (2.19)

Scalar products can then be defined as

a · b = aµbν = a0b0 −~a ·~b. (2.20)

Lorentz transformations will be denoted by Lµν. The effect of a Lorentz transforma-

tion is to modify the vectors in this way

aµ −→ a′µ = Lµνaν . (2.21)

By definition, Lorentz transformations leave scalar products unchanged

aµaµ = a′µa′µ = LµνaνLµ
σ aσ

⇒ LµνLµ
σ = δσν

⇒ LµνLµσ = δνσ

(2.22)
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Any four-component object that transforms like aµ under a Lorentz transformation

is a Lorentz four-vector. Apart from the example of the coordinate vector, we can also

consider, e.g.,

pµ = (E/c, px, py, pz), kµ = (ω/c, kx, ky, kz), (2.23)

Important: the four-dimensional “nabla” or “del” operator is defined as

∂µ =
∂

∂xµ
=

(

∂

∂x0
,

∂

∂x1
,

∂

∂x2
,

∂

∂x3

)

=
(∂t

c
, ~∇
)

. (2.24)

Even if it is a covariant vector, the relation with the three-dimensional nabla operator is

different from that of a normal vector. This guarantees that the differential of a scalar

functionφ(x) is a scalar

δφ(x) = ∂tφ(t,~x)δt + ~∇φ(t,~x) · δ~x = ∂µφ(x)δxµ . (2.25)

A useful operator is the so-called d’Alembertian

∂µ∂µ =
∂2

t

c2
− ~∇2 (2.26)

often denoted by ✷, which generalizes the three-dimensional Laplacian operator.

2.1.2 Excursus: natural units

A nice discussion is presented in Sec. 6.1 of Mandl–Shaw [26]. When dealing with Quan-

tum Mechanics and Relativity the fundamental quantities we need are

h̄ ≈ 1.05× 10−34 kg m2/s, c ≈ 3.00× 108 m/s. (2.27)

Natural units are defined by the choice

h̄ = c = 1. (2.28)

In natural units, all quantities can be expressed in terms of a power of M or, equiva-

lently, of energy. Connecting natural-unit expressions to c.g.s. units1 is not difficult, it is

sufficient to multiply by the appropriate combinations of h̄ and c factors.

1With c.g.s. we mean rationalized Gaussian units, or Lorentz–Heaviside units, where ǫ0 = 1. Please

note that several equations, including Maxwell’s equations, may look different in different systems. For

instance, in the c.g.s. system we have

~∇ · ~E = ρ, ~E = −~∇Φ− 1

c

∂~A

∂t
, ~FLorentz =

q

c
~v× ~B (2.29)
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For instance, in c.g.s. the proton weights mP = 1.67× 10−27 kg. In natural units, we

can choose to express it as an energy. Since the units of energy are J = kg m2/s2 we need

to multiply the value by a combination of factors that has dimension m2/s2, i.e., c2.

mP = 1.67× 10−27 kg
∣

∣

∣

c.g.s.
−→ 1.67× 10−27 c2 kg

∣

∣

∣

n.u.
= 1.50× 10−10 J

∣

∣

∣

n.u.
(2.30)

For subnuclear physics, the preferred unit for energy is GeV. The conversion between

Joules and GeV is

1 GeV = 109 eV = 109 × 1.60× 10−19 C V = 1.60× 10−10 J. (2.31)

From this we conclude that

mP = 0.938 GeV
∣

∣

∣

n.u.
. (2.32)

A second and a meter in c.g.s. units can be expressed in terms of energy in n.u.

1 s
∣

∣

∣

c.g.s.
−→ 1s

h̄

∣

∣

∣

n.u.
= 0.952× 1034 J−1

∣

∣

∣

n.u.
= 1.52× 1024 GeV−1

∣

∣

∣

n.u.
, (2.33)

1 m
∣

∣

∣

c.g.s.
−→ 1m

h̄c

∣

∣

∣

n.u.
= 0.317× 1026 J−1

∣

∣

∣

n.u.
= 0.507× 1016 GeV−1

∣

∣

∣

n.u.
. (2.34)

This means that in n.u. time and space have the dimensions of the inverse of an energy

(or the inverse of a mass). Note that in natural units the typical size of a nucleon is 1 fm =

10−15 m ≈ 1/(200 MeV).

The electron charge squared in the SI units is equal to 2.56× 10−38 C2. In c.g.s. units

it has the dimensions of kg m3/s2. To convert to c.g.s. units we use the value of the

dielectric constant ε0 = 8.85× 10−12 C2s2/(kg m3). We obtain in the c.g.s. e2 = 2.89×
10−25 kg m3/s2.

The fine structure constant has no dimensions in c.g.s. units and therefore has no di-

mensions also in natural units. The definition is

α =
e2

4πh̄c

∣

∣

∣

c.g.s.
=

e2

4π

∣

∣

∣

n.u.
≈ 1

137
(2.35)

In natural units, the typical size of an atom can be written in terms of Bohr’s radius

rB ≈ 0.5× 10−10 m = 1/(4 KeV) and the corresponding potential energy is α/rB ≈ 30

eV, which is the order of magnitude of the energies involved in atomic phenomena.

As another exercise, we can consider cross sections. In natural units they are given

often in GeV−2. In c.g.s. units they have the dimension of a surface, therefore they should

be given in m2 (or more commonly in barn= 10−28 m2). The conversion is

σ = N GeV−2
∣

∣

n.u.
−→ N GeV−2(h̄c)2

∣

∣

c.g.s.
= N GeV−2(1.973× 10−16)2 GeV2m2

∣

∣

c.g.s.

= N 0.389 mbarn
∣

∣

c.g.s.

(2.36)
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2.1.3 Covariance of the Klein-Gordon equation

We define as “Lorentz invariant” a quantity that does not change under Lorentz trans-

formations, e.g., m, aµaµ, FµνFµν... Lorentz invariants can be constructed not only with

four-vectors, but also with spinors, as we shall see later. All Lorentz scalars are Lorentz

invariants2. A scalar quantity (i.e., a quantity expressed by a number) is not necessar-

ily a Lorentz scalar and therefore not necessarily Lorentz invariant: for instance, energy

is a scalar quantity, but is is a component of a four vector and changes under Lorentz

transformations.

We use the term “Lorentz covariance” to indicate that a certain relation has the same

form under Lorentz transformations (i.e., it is the same in all inertial reference frames). In

other words, two observers in two different inertial frames should agree on the validity of

the relation. It would be more meaningful to call it “form invariance.” A relation involv-

ing Lorentz scalars is (manifestly) Lorentz covariant (e.g., m2 = pµpµ). The same relation

written in terms of components (E2 = m2 + ~p2) is covariant, but not manifestly so. The

nonrelativistic relation for energy E = ~p2/(2m) is not Lorentz covariant (it is covariant

under rotations only).

In the Klein–Gordon equation, we have m which is clearly a Lorentz invariant, and we

have the operator ∂µ∂µ, which is also a Lorentz invariant since

∂µ∂µ → ∂′µ∂′µ = Lµν∂νLµ
σ∂σ = ∂µ∂µ (2.37)

For the Klein–Gordon equation to be Lorentz covariant, we need the function φ to be

a “scalar function”, i.e.,

φ′(x′) = φ(x). (2.38)

For instance, a function like f (x) = kµxµ is a scalar function: if we apply a Lorentz trans-

formation, the four-vector xµ will change into x′µ = Lµνxν, but its change will be compen-

sated by a change of the four-vector kµ. The electrostatic potential V(t,~x) = q/(4π |~x|) is

not a Lorentz scalar field.

2.1.4 Nonrelativistic limit

We want to study the limit for c → ∞. We obviously need to write things in the c.g.s.

system. We first rewrite

φ = e−i mc2

h̄ tφ′ (2.39)

which serves the purpose of isolating the rest energy mc2.

2Pseudoscalars are also invariants, but they change sign under parity
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We need to use

∂2
t

(

e−i mc2

h̄ tφ′
)

= ∂t

(

− imc2

h̄
e−i mc2

h̄ tφ′ + e−i mc2

h̄ t∂tφ
′
)

=
(

−m2c4

h̄2
e−i mc2

h̄ tφ′ − imc2

h̄
e−i mc2

h̄ t∂tφ
′ − imc2

h̄
e−i mc2

h̄ t∂tφ
′ + e−i mc2

h̄ t∂2
tφ
′
)

(2.40)

Starting from the Klein–Gordon equation we can perform the following steps:

0 =

(

∂2
t

c2
− ~∇2 +

m2c2

h̄2

)

e−i mc2

h̄ tφ′

= e−i mc2

h̄ t

(

∂2
t

c2
− 2im

h̄
∂t −

�
�
��m2c2

h̄2
− ~∇2 +

�
�

��m2c2

h̄2

)

φ′

≈ −2m

h̄2
e−i mc2

h̄ t

(

ih̄∂t +
h̄2~∇2

2m

)

φ′ = 0.

(2.41)

which corresponds to Schrödinger equation. The solutions of the Schrödinger equation

for a free particle are of the form

ψ(t,~x) = e−iωkt+i~k·~x (2.42)

withωk = h̄~k2/(2m).

2.1.5 Solutions of the Klein-Gordon equation

The starting equation is
(

∂µ∂µ + m2
)

φ(x) = 0 (2.43)

We seek a solution of the equation in the form of plane waves, i.e.,

φ(x) = φ(k)e−ik·x = φ(k)e−ikµxµ = φ(ω, k)e−iωt+i~k·~x (2.44)

The four-vector k in the c.g.s. system would be defined as

kµ = (ω/c,~k)|c.g.s. (2.45)

whereω is the frequency of the wave (units 1/s) and~k is the wave number (units 1/m) .

The four-momentum vector would be

pµ = (E/c,~p)|c.g.s. = (ωh̄/c, h̄~k)|c.g.s. (2.46)

where E is the energy (units kg m2/s2), p is the momentum (units kg m/s). In the natural

units system, however, these two vectors are just the same. Talking about frequency or
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energy of a plane wave is the same, and talking about wave-vector or momentum is the

same too.

Plugging (2.44) into (2.43) we obtain

∂µ∂µφ(x) = φ(k)∂µ
(

∂

∂xµ
e−ikµxµ

)

= φ(k)∂µ
(

−ikµ e−ikµxµ
)

= −kµkµ φ(k)e
−ikµxµ

(2.47)

The Klein–Gordon equation in this case becomes

(k2 −m2)φ(x) = 0 (2.48)

which is solved for k2 = m2. When this condition is fulfilled, we say that the particle is

“on mass shell” or simply “on shell.” The on-shell condition implies that

ω2 =~k2 + m2

⇒ ω = ±ωk = ±
√

~k2 + m2
(2.49)

We can check what this means in c.g.s. units.

ω2

c2
=~k2 +

m2c2

h̄2

h̄2ω2 = h̄2c2~k2 + m2c4

E2 = ~p2c2 + m2c4

(2.50)

which is the correct relativistic expression for the energy we started from. The above

relations are also known as “dispersion relations,” a term coming from wave mechanics.

Let us for a moment focus on the positive energy or positive frequency solutions.

What is the “mass”? From the mathematical point of view, it is just a parameter in the

wave equation. It is however connected to the energy and the momentum of the free wave

in the same way as the mass of a particle. In a sense, this could be taken as a definition of

what the mass is.

2.1.6 Problems with the Klein–Gordon equation

The result of the energy poses a first problem, namely that there are also solutions with a

negative energy and their energy has no lower limit. This is due essentially to the fact that

we started from a quadratic expression for E, which does not exclude negative-energy

values.

It seems almost as there may exist two identical versions of the Klein–Gordon wave,

with positive and negative energy respectively.



2.1 The Klein–Gordon equation 17

There is another problem with the Klein–Gordon equation. In Quantum Mechanics

we can define the “probability density” and a “current density” in the following way

ρ(t,~x) = ψ∗(t,~x)ψ(t,~x) (2.51)

~j(t,~x) = − ih̄

2m

(

ψ∗(t,~x)~∇ψ(t,~x)−ψ(t,~x)~∇ψ∗(t,~x)
)

(2.52)

Due to the validity of the Schrödinger equation, the two quantities are connected by the

continuity equation

∂tρ+ ~∇ ·~j = 0 (2.53)

which means also that the integral of the probability density over all space is constant

(use divergence theorem)
∫

d3xρ(t,~x) = const. (2.54)

For the Klein–Gordon case, we can introduce a four-current

jµ(x) =
i

2m

(

φ∗(x)∂µφ(x)−φ(x)∂µφ∗(x)
)

. (2.55)

Indeed, this four-current satisfies a continuity equation. Using the Klein–Gordon

equation, we can check that (we drop the argument of theφ function for convenience)

∂µ jµ = 0

∂µ jµ =
i

2m

(

(

∂µφ
∗)∂µφ+φ∗∂µ∂µφ

−
(

∂µφ
)

∂µφ∗ −φ∂µ∂µφ∗
)

=
i

2m

(

φ∗∂µ∂µφ−φ∂µ∂µφ∗
)

=
i

2m

(

φ∗m2φ−φm2φ∗
)

= 0.

(2.56)

If we isolate the density contribution, i.e., the 0th component, we obtain

ρ(x) =
i

2m

(

φ∗(x)∂tφ(x)−φ(x)∂tφ
∗(x)

)

. (2.57)

If we apply this definition to the solution with a negativeω (i.e., eiωkt+i~k·~x) we obtain

ρ(x) =
i

2m
2iωkφ

∗(x)φ(x) = −ωk

m
φ∗(x)φ(x), (2.58)

which is negative and is impossible to interpret as a probability density.
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2.1.7 Coupling to electromagnetic field

In classical mechanics, the coupling of a charge particle to the electromagnetic field can

can be obtained by the so-called “minimal substitution” (or “minimal coupling”), i.e.,

E→ E− qΦ, ~p→ ~p− q~A, (2.59)

where q is the charge of the particle, Φ is the scalar potential and ~A is the vector potential

of the elm field

Analogously, in the case of quantum mechanics, we use the substitution

ih̄∂t → ih̄∂t − qΦ, −ih̄~∇ → −ih̄~∇− q~A, (2.60)

In four-vector notation, the minimal substitution can be written in a remarkably sim-

ple way

∂µ → Dµ = ∂µ +
iq

h̄c
Aµ (2.61)

where Aµ = (Φ, ~A) is the four-potential of the elm field.

It is possible to compute the solutions of the K–G equation in the presence of an elec-

trostatic field an try to apply this approach to the study of the electron in the hydrogen

atom. In the nonrelativistic limit, we would obtain the same results as for the Schrödinger

equation. However, the relativistic corrections would lead to wrong results.

2.2 The Dirac equation

Dirac is certainly the most influential scientist in the development of QED. Nobel prize

winner in 1933. One of the greatest theorists of the XX century. He gave contributions

to Quantum Mechanics (the bra and ket notation, for instance) and to Mathematics (the

Dirac delta and the theory of distributions). But his most important achievement was the

equation that bears his name, published in 1928 [16] and engraved on his memorial stone

in Westminster Abbey.

One of the problematic points of the Klein–Gordon equation is the fact that it is de-

duced from a relation involving E2 and thus contains a second-order time derivative (to-

gether with second-order space derivatives). Dirac tried to look for an equation with a

first-order time (and space) derivatives. He demanded that the solution of this equation

were also solutions of the Klein–Gordon equation, which guarantees also the right dis-

persion relation (i.e., the right relation between energy and momentum, or frequency and

wave number).

We start from the following expression of the Dirac equation

(

iγµ∂µ −m
)

ψ(x) = 0 (2.62)

For the moment, we don’t know what the factors γµ mean.
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We now multiply the equation to the left by a similar operator in order to get as close

as possible to the Klein–Gordon equation

(

iγν∂ν + m
)(

iγµ∂µ −m
)

ψ(x) = 0. (2.63)

If the following condition holds

(

γν∂ν
)(

γµ∂µ
) ?
= ∂µ∂µ (2.64)

then indeed we can recover the Klein–Gordon equation. If we write the above condition

explicitly

(

γ0∂0 − γ1∂1 − γ2∂2 − γ3∂3
)(

γ0∂0 − γ1∂1 − γ2∂2 − γ3∂3
)

= ∂0∂0 − ∂1∂1 − ∂2∂2 − ∂3∂3

(2.65)

we realize that we need

(γ0)2 = 1 (γi)2 = −1 γ0γi + γiγ0 = 0 etc. (2.66)

In a condensed form, we need

γµγν + γνγµ = {γµ ,γν} = 2gµν . (2.67)

The γs cannot be numbers, i.e., commuting objects, they must be matrices. They are

called Dirac matrices. Since we are talking about matrices, it is more appropriate to write

their anticommutation relation as

γµγν + γνγµ = {γµ ,γν} = 2gµν1. (2.68)

All the properties of the Dirac matrices descend from (2.68). The Dirac matrices are

said to generate a Clifford algebra. Usually, the Dirac matrices are chosen with the extra

condition (called “Hermiticity condition”)

γµ† = γ0γµγ0. (2.69)

Finally, it is very useful to use the condensed notation

/a = γµaµ , (2.70)

which allows us to write the Dirac equation as

(

i/∂−m
)

ψ(x) = 0. (2.71)
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2.2.1 Dirac matrices

Due to their importance also in practical calculations, we need to spend some time on

studying the properties of Dirac matrices. It is important to keep in mind that Dirac

matrices have one Lorentz index and two Dirac indices. When needed to avoid confusion,

we will explicitly write the Dirac indices with capital letters, i.e.,

γ
µ
AB (2.72)

but most of the time this indices are dropped, which may be a source of confusion at the

beginning.

Dirac matrices must be traceless

Tr[γν] =
1

gµµ
Tr[γµγµγν] (choosing µ 6= ν)

=
1

gµµ
Tr[γµγνγµ] = − 1

gµµ
Tr[γµγµγν] = −Tr[γν] = 0.

(2.73)

Due to the fact that (γ0)2 = 1, its eigenvalues can be only ±1, while from (γi)2 = −1,

their eigenvalues can be only ±i. Traceless matrices with these eigenvalues can only be

even dimensional. But we need at least four independent matrices, so we cannot use

two dimensional matrices (there are only three independent ones plus the identiy). The

minimum dimension for Dirac matrices is thus 4× 4.

It is useful also to introduce the fifth matrix

γ5 = iγ0γ1γ2γ3 (2.74)

with the property

γ5γ
µ = −γµγ5 (2.75)

Due to the anticommutation relations, we can also write

γ5 = − i

4!
εµνρσγ

µγνγργσ (2.76)

where we introduced the totally antisymmetric tensor with the convention3

ε0123 = +1, ε0123 = −1. (2.77)

The Hermitian conjugates

γ0† = γ0, γi† = −γi, γ
†
5 = γ5. (2.78)

3This convention is often a source of confusion. Our convention is consistent with Peskin and Schroeder,

see Eq. 3.68 in [28], but not with Mandl–Shaw, see Eq. A.13 in [26].
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Other interesting properties (what is interesting is also to understand how to prove

them and get used to manipulating γ matrices)

γµγµ =
1

2
(gµνγ

µγν + gµνγ
νγµ) = gµνgµν = δµµ = 4, (2.79)

γµγ
αγµ = γµ(2gαµ − γµγα) = 2γα − 4γα = −2γα , (2.80)

γβγµγνγβ = 4gµν . (2.81)

γαγµγβγνγα = −2γνγβγµ , (2.82)

We shall see that traces of γ matrices will be very important in the calculation of Feynman

diagrams. Some useful “trace theorems” are

Tr[γαγβ] =
1

2

(

Tr[γαγβ] + Tr[γαγβ]
)

= gαβTr[1] = 4gαβ, (2.83)

Tr[γαγβγργσ ] = 4
(

gαβgρσ + gασgβρ − gαρgβσ
)

, (2.84)

Tr[γ5] = Tr[γ0γ0γ5] = Tr[γ0γ5γ
0] = −Tr[γ0γ0γ5] = 0, (2.85)

Tr[odd num. of γ] = Tr[γαγβ . . .γσγ5γ5] = Tr[γ5γ
αγβ . . .γσγ5] (2.86)

= −Tr[γαγβ . . .γσγ5γ5] = 0, (2.87)

Tr[γ5γ
αγβ] = 0, (2.88)

Tr[γ5γ
αγβγργσ ] = −4iεαβρσ . (2.89)

Another very useful set of relations (they are all different version of the same relation),

which descends quite easily from the anticommutation relations, is

γµ /p = 2pµ − /pγµ , (2.90)

/k/p = 2p · k− /p/k, (2.91)

/p2 = p2. (2.92)

2.2.2 Representations of the Dirac matrices

The properties discussed above are independent of the specific representation of the ma-

trices we choose. However, sometimes specific calculations require that we write down

explicitly the matrix elements.

The so-called standard or Dirac representation is explicitly

γ0 SR
=











1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1











, γ1 SR
=











0 0 0 1

0 0 1 0

0 −1 0 0

−1 0 0 0











, (2.93)
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γ2 SR
=











0 0 0 −i

0 0 i 0

0 i 0 0

−i 0 0 0











, γ3 SR
=











0 0 1 0

0 0 0 −1

−1 0 0 0

0 1 0 0











. (2.94)

It is of course possible to check the properties of the γ matrices directly with this

representation. The notation can be considerably condensed by using the Pauli matrices

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (2.95)

whereby we obtain

• Standard or Dirac representation

γ0 SR
=

(

1 0

0 −1

)

, γi SR
=

(

0 σ i

−σ i 0

)

, γ5
SR
=

(

0 1

1 0

)

. (2.96)

• Chiral representation

γ0 CR
=

(

0 1

1 0

)

, γi CR
=

(

0 σ i

−σ i 0

)

, γ5
CR
=

(−1 0

0 1

)

. (2.97)

This version is in accordance with Peskin-Schroeder. Ryder, for instance, has an

opposite sign for γi and γ5.

The chiral representation can be written in an even more compact way introducing

the notation

σµ = (1,σ i), σµ = (1,−σ i), (2.98)

so that

γµ
CR
=

(

0 σµ

σµ 0

)

. (2.99)

A different representation can be always obtained by means of a unitary transforma-

tion on the matrices

γµ|rep. 2 = Uγµ|rep. 1U†, UU† = 1. (2.100)

For instance, the unitary transformation that connects the standard representation to

the chiral representation is

U =
1√
2

(

1 −1
1 1

)

=
1√
2

(

1− γ0γ5

)

. (2.101)
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2.2.3 The Dirac Hamiltonian

From the Dirac equation, we want to obtain an expression similar to Schrödinger equation

with an Hamiltonian operator. We can do this by multiplying the equation to the left by

γ0

(

iγµ∂µ −m
)

ψ(x) = 0

γ0
(

iγµ∂µ −m
)

ψ(x) = 0
(

i∂t1+ iγ0~γ · ~∇− γ0m
)

ψ(x) = 0

i∂t1ψ(x) = HDψ(x)

(2.102)

with

HD = −i~α~∇+βm, ~α = γ0~γ β = γ0. (2.103)

In c.g.s. units

i∂th̄ψ(x) =
[

−ih̄c~α · ~∇+βmc2
]

ψ(x). (2.104)

The Dirac Hamiltonian is an Hermitian operator because ~α and β are Hermitian, on

the basis of Eq. 2.69.4.

2.2.4 Energy of plane-wave solutions

We seek solution of the the form

ψA(x) = fA(k) e−ik·x = fA(ω, k) e−iωt+i~k·~x (2.105)

note the presence of a Dirac index A: ψA is now not just a function, but a vector with the

same indices as the Dirac matrices. It is called a Dirac spinor. The Dirac equation is a

collection of four equations, for each component of the Dirac spinor.

Let us now apply the Dirac equation, in the form (2.102) to our trial solution

ω1 fA(k)e
−ik·x =

[

~α ·~k +βm
]

fA(k)e
−ik·x. (2.106)

The expression~α ·~k +βm corresponds to the Hamiltonian operator in momentum space.

To make the situation clearer, we write the equation in standard representation where

~α =

(

0 ~σ

~σ 0

)

, β =

(

1 0

0 −1

)

. (2.107)

We obtain
(

(m−ω)1 ~σ ·~k
~σ ·~k −(m +ω)1

)

fA(k) = 0 (2.108)

4Remember that the Hermitian of ∂µ is −∂µ
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We choose~k in the z direction (~k = (0, 0, |~k|)) and we explicitly obtain the system of

equations










m−ω 0 |~k| 0

0 m−ω 0 −|~k|
|~k| 0 −m−ω 0

0 −|~k| 0 −m−ω





















f1

f2

f3

f4











= 0. (2.109)

The eigenvalues equations give us

(m−ω)2(m +ω)2 +~k4 + 2~k2(m2 −ω2) = 0

(m2 −ω2)2 + 2~k2(m2 −ω2) +~k4 = 0
(

m2 −ω2 +~k2
)2

= 0

ω = ±ωk = ±
√

~k2 + m2

(2.110)

Note that each of the solutions is twice degenerate (of the four eigenvalues, two are +ωk

and two are −ωk). Interestingly, Dirac started from a first-order partial equation in the

hope of removing the negative energy states, and he ended up with four possible solu-

tions, two of which are negative. It turns out that this degeneracy is due to the fact that

the Dirac equation describes spin-half particles, which can have spin up or down. The

two spin states have the same energy in the case of a free particle.

Similarly to the Klein–Gordon case: there exist states where the energy is negative

and not bounded from below. Dirac tried to solve this issue in a paper in 1930 [17]. He

hypothesized that the vacuum is in reality filled by a “sea” of infinitely many particles.

If the particles are electrons, due to Pauli exclusion principle they fill the energy levels

up to what can be defined as the zero-point energy and no electron can fall in an energy

state lower than that (this would not be possible for a integer-spin particle). However,

an electron of the sea can be promoted to a higher level of energy, above zero. This at

the same time creates a positive-energy electron and leaves behind a “hole” in the sea.

A hole in the sea produces the same effects as a particle with the same characteristics of

the electron, but opposite charge. This idea led to the prediction of the existence of the

anti-electron, i.e., the positron. At the beginning, Dirac thought that the proton could

represent the antiparticle of the electron (1929). However, it was shown by H. Weyl that

negative-energy solutions must have the same mass as the positive-energy ones (1930).

Moreover, Oppenheimer and Tamm proved that the possibility of annihilation of protons

and electrons would quickly lead to instability of ordinary matter (1930). Therefore, Dirac

predicted the existence of the positron in 1931. The positron was eventually observed

by Anderson in 1932. Heisenberg wrote: ”I think that the discovery of antimeatter was

perhaps the biggest jump of all the big jumps in physics in our century.”

In spite of this achievement, the theory of holes has some drawbacks. Here is an in-

complete list of problems: it works only for fermions (implying that no relativistic theory

for bosons could exist); the infinite collections of sea fermions should have an infinite

charge and infinite mass; there could be interactions among sea fermions.
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2.2.5 The Dirac four-current

It is possible to define also in the case of the Dirac equation a conserved four-current

jµ = ψγµψ (2.111)

where we defined

ψ = ψ†γ0 (2.112)

It is possible to derive this “strange” formula in a way that we shall see in Sec. 2.2.11.

It is also possible to check that it has indeed the properties of a four-vector, as we shall

see in one of the next subsections. For the moment, let’s give the formula for granted and

let’s check if its four-divergence is zero and what is the associated conserved quantity.

We first need to write the “conjugate” Dirac equation for ψ. We take the Dirac equa-

tion, transpose and conjugate it, insert a γ0γ0 = 1 and multiply to the right by γ0 (re-

member that γ0γ0 = 1):

i∂µγ
µψ−mψ = 0

⇒− i∂µψ
†γµ† −mψ† = 0

− i∂µψ
†γ0γ0γµ†γ0 −mψ†γ0 = 0

i∂µψγ
µ + mψ = 0

(2.113)

Often, this equation is written as

ψ
(

i
←−
∂ µγ

µ + m
)

= 0

ψ
(

i
←−
/∂ + m

)

= 0
(2.114)

The arrow simply means that the derivative operator acts on the function to its left. It

should not be confused with a vector. The reason for introducing this notation is just that

the equation looks better.

Let us now check the four-divergence of the current

∂µ jµ = ∂µ
(

ψγµψ
)

=
(

∂µψ
)

γµψ+ψγµ
(

∂µψ
)

= imψψ− imψψ = 0

(2.115)

Now, we can observe that the “density” j0 is

ρ = j0 = ψγ0ψ = ψ†γ0γ0ψ = ψ†ψ (2.116)

We see in this case that the density is positive definite, contrary to the Klein–Gordon case.
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2.2.6 Coupling to electromagnetic field and nonrelativistic limit

As in the case of classical mechanics or the Schrödinger equation, the coupling to the

electromagnetic field can be obtained by the so-called “minimal substitution”, i.e.,

∂µ → Dµ = ∂µ + iqAµ (2.117)

where Aµ = (Φ, ~A) is the four-potential of the elm field. If we want to recover the correct

expression including explicit h̄ and c factors, we need to check that qAµ has the dimen-

sions of an energy, ML2/T2, while ∂µ as the dimensions of 1/L. Therefore, we have to

divide the second term by h̄c, which has dimensions ML3/T2, i.e.,

∂µ → Dµ = ∂µ +
iq

h̄c
Aµ (c.g.s.) (2.118)

The Dirac equation for an electron with q = −e becomes

[

ih̄

(

/∂− ie

h̄c
/A

)

−mc

]

ψ = 0 (2.119)

This can be rewritten (multiplying to the left byγ0 and remembering that the ∂0 = ∂t/c

γ0

[

ih̄γ0 ∂t

c
+

e

c
γ0Φ− e

c
~γ · ~A + ih̄~γ · ~∇−mc

]

ψ = 0

ih̄1∂tψ =

[

−ich̄~α · ~∇+ mc2β− eΦ1+ e~α · ~A
]

ψ

(2.120)

To study the nonrelativistic limit, it is convenient to first pose

ψ = e−i mc2

h̄ tψ′ (2.121)

so that the equation becomes

ih̄1∂tψ
′ =

[

c~α ·
(

−ih̄~∇+
e

c
~A

)

− eΦ1+ mc2(β− 1)

]

ψ′ (2.122)

work in standard representation and split the (four-dimensional) Dirac spinor in two

components (each one two-dimensional)

ψ′ =
(

ϕ

χ

)

. (2.123)

The splitting could be done also using the projector operators

P+ =
1+ γ0

2
, P− =

1− γ0

2
. (2.124)
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Then, we obtain two (two-dimensional) equations







ih̄1∂tϕ = c~σ ·
(

−ih̄~∇+ e
c
~A
)

χ− eΦ1ϕ

ih̄1∂tχ = c~σ ·
(

−ih̄~∇+ e
c
~A
)

φ− eΦ1χ− 2mc2
1χ

(2.125)

The identity matrices (now in two dimensions) are a bit redundant, but they make it

explicitly clear that each equation is still two-dimensional. We shall drop them in the

following.






(

ih̄∂t + eΦ
)

ϕ = c~σ ·
(

−ih̄~∇+ e
c
~A
)

χ
(

ih̄∂t + eΦ+ 2mc2
)

χ = c~σ ·
(

−ih̄~∇+ e
c
~A
)

ϕ
(2.126)

The nonrelativistic approximation amounts to neglecting the terms ∂t + eΦ compared

to 2mc2 in the second equation, leading to

χ ≈ 1

2mc
~σ ·
(

−ih̄~∇+
e

c
~A
)

ϕ (2.127)

In practice, it also means that χ≪ϕ. We then obtain an equation forϕ

(

ih̄∂t + eΦ
)

ϕ ≈ 1

2m

[

~σ ·
(

−ih̄~∇+
e

c
~A
)

]2

ϕ (2.128)

On the r.h.s. we have an expression of this type (from now on, all expressions are in

Euclidean metric, i.e., the upper or lower position of the indices does not matter)

(~σ ·~a)(~σ ·~b) = σiσ ja
ib j

=

(

1

2
{σi,σ j}+

1

2
[σi,σ j]

)

aib j

=

(

1

2
2δi j1+

1

2
2iεi jkσ

k

)

aib j

=~a ·~b1+ i~σ · (~a×~b)

(2.129)

We have to be careful when considering the second term because instead of a and b we

have operators acting on theϕ. In fact

εi jk

(

−ih̄∂i + eAi/c
)(

−ih̄∂ j + eA j/c
)

ϕ = εi jk

(

−h̄2
∂i∂ j − ih̄

e

c

(

∂i A j + Ai∂ j
)

+
e2

c2
Ai A j

)

ϕ

(2.130)

The first and last terms drop because ε is antisymmetric. The surviving term is

∂i A jϕ = (∂i A j)ϕ+ A j∂iϕ (2.131)
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Therefore, our expression becomes

−εi jkih̄
e

c

[

(∂i A j) + A j∂i + Ai∂ j
]

ϕ = −εi jkih̄
e

c
(∂i A j)ϕ = −ih̄

e

c

(

~∇× ~A
)

k
ϕ = −ih̄

e

c
Bkϕ

(2.132)

In conclusion, our nonrelativistic equation becomes

ih̄∂tϕ ≈
[

1

2m

(

−ih̄~∇+
e

c
~A

)2

− eΦ+
h̄

2m

e

c
~B ·~σ

]

ϕ (2.133)

In practice, we obtain the Schrödinger–Pauli equation with the standard coupling to an

elm field (first part) plus a term that couples the magnetic field to the spin.

Not only: usually a magnetic moment µ couples to the magnetic field with ~B · ~µ. The

magnetic moment is connected to the angular momentum by

~µ =
q

2mc
~L (2.134)

Naively, we could assume that the same relation applies to spin ~S = h̄
2~σ . But in reality,

we have to introduce a g factor

~µ = g
q

2mc
~S (2.135)

For the Dirac particle (i.e., electrons and in general spin-half particles), inspection of the

Schrödinger–Pauli equation tells us that g = 2. This result was obtained by Pauli out of

phenomenological considerations and Dirac obtained it from theoretial principles.

It is also possible to solve the Dirac equation when a Coulomb potential is present

(Φ = Ze/r and ~A = 0). We should start from Eq. (2.103), replace the time derivative with

∂t/c −→ ∂t/c + i
h̄c

Ze2

r to obtain the Dirac Hamiltonian in a Coulomb potential

H′D = −ih̄c~α · ~∇+βmc2 − Ze2

r
. (2.136)

The eigenvalues of the Hamiltonian can be obtained (by means of several steps, see, e.g.,

Sec. 3.7 of [25]) and correspond to the energy levels of a hydrogen atom, with the correct

spin-orbit coupling and all relativistic corrections in place (Darwin term, Thomas preces-

sion factor), i.e.,

E = mc2











1 +









Zα

n−
(

j + 1
2

)

+
[

(

j + 1
2

)2 − Z2α2
] 1

2









2










− 1
2

≈ mc2

[

1− Z2α2

2n2
− Z4α4

2n4

(

n

j + 1
2

− 3

4

)]

.

(2.137)
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2.2.7 Excursus: rotations and Pauli spinors

Before addressing the general question of Lorentz transformations and Dirac spinors, let

us first remind ourselves some useful issues concerning three-dimensional rotations and

Pauli spinors.

Rotations are orthogonal matrices with determinant 1

RT = R−1, det R = +1 (2.138)

Matrices with such properties form a group, called the Special Orthogonal group in n

dimensions, SO(n). The group is non-Abelian because the elements of the group do

not commute. The combination of these transformations with space reflections forms

the general orthogonal group, O(n), which encompasses also improper rotations, with

det R = −1. In general, a group is an abstract mathematical construction that is indepen-

dent of its specific representation. For instance, rotation matrices in a three-dimensional

space are a representation of the group SO(3). They act on three-dimensional vectors,

which constitute the basis for that representation. The dimension of the representation

corresponds to the dimension of the base space (in this case 3).5 A (completely) reducible

representation can be written in block-diagonal form and its basis vectors can be split into

subsets that do not mix with each other.

We know very well how to write down a rotation matrix in three dimensions. There

are three of them, let us consider a rotation by an angle θ about the z axis

R3
i j ≡ R(12)

i j =





cosθ − sinθ 0

sinθ cosθ 0

0 0 1





θ→0≈





1 0 0

0 1 0

0 0 1



+θ





0 −1 0

1 0 0

0 0 0





= δi j +θ
(

−δ1
i δ

2
j + δ

2
i δ

1
j

)

= 1+ iθJ3,

(2.139)

where in the second step we have already written the infinitesimal form of the rotation

matrix, which is just a small variation of the identity. Since the elements of the group

can be defined by means of parameters that take continuous values (the angle θ and the

other angles in the other directions), the group is called a Lie group. The operator J3 is

defined as the generator of rotations around the z axis. The group is characterized by

three such generators, which fulfill the following commutation relations (the algebra of

the Lie group)

[Ji, J j] = iεi jk Jk. (2.140)

The commutation relations are the same as for the components of angular momentum. In

fact, angular momentum operators are the generators of rotation. The values of εi jk are

called the structure constants. The generators look different in different representations

of the group, but they follow always the same algebra and the structure constants remain

the same.

5The dimensions of the representation do not have to correspond to the n index denoting the group.
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A rotation of a finite angle about a direction~n can be written as

R = eiθ~J·~n (2.141)

and so forth for the other components. The exponential of a matrix is defined by its power

series expansion, i.e.:

eM =
∞

∑
k=0

1

k!
Mk. (2.142)

For instance, in the case of R3 we have written an infinitesimal rotation as in Eq. (2.139)

and we can check that we can write a finite rotation as

R3 = eiθJ3
=





1 0 0

0 1 0

0 0 1



+θ





0 −1 0

1 0 0

0 0 0



+
θ2

2





−1 0 0

0 −1 0

0 0 0



+
θ3

6





0 1 0

−1 0 0

0 0 0



+ . . .

=





cosθ − sinθ 0

sinθ cosθ 0

0 0 1





(2.143)

We can give a different proof of the above by finding the unitary matrix that diagonalizes

iJ3, which is

U =
1√
2





i −i 0

1 1 0

0 0
√

2



 . (2.144)

In fact

U−1(iJ3)U =





i 0 0

0 −i 0

0 0 0



 (2.145)

Then

R3 = eiθJ3
= UeθU−1(iJ3)UU−1 = U





eiθ 0 0

0 e−iθ 0

0 0 1



U−1 =





cosθ − sinθ 0

sinθ cosθ 0

0 0 1



 (2.146)

Suppose we want to check that non-relativistic quantum mechanics, is invariant under

rotations. For a free particle, for instance, we ought to check that the Schrödinger equation

ih̄∂tψ(t,~x) = −
h̄2~∇2

2m
ψ(t,~x) (2.147)

does not change under rotations. On the wavefunction, the rotation has the following

effect

ψ′(t,~x′ = R~x) = ψ(t,~x), (2.148)
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i.e., the value of the rotated wavefunction at the rotated position ~x′ is the same as the

value of the original wavefunction at ~x. The wavefunction in this case is invariant under

rotations. This is naturally the case whenever the function depends on scalar products

between vectors, for instance on~k ·~x.

To be sure about the invariance of the Schrödinger equation, we have finally to check

that
(

R
(

~∇
)

)2
= ~∇RT · R~∇ = ~∇2 (2.149)

(the time-derivative term is also trivial).

This case is admittedly quite simple. But the situation is not trivial when it comes to

the addition of spin. The Schrödinger–Pauli equation contains an operator ~B ·~σ and the

wavefuntion is now represented by a two-component Pauli spinor. We would like our

equation to retain its form after rotations, i.e., to be rotation covariant. Since a rotation

changes the vector ~B, covariance can be guaranteed only if rotations have an effect also

on the spinors. Ideed, in quantum mechanics we learn that a spinor oriented along the z

axis is different from a spinor oriented along the x axis and the two can be connected by

a rotation matrix U in spinor space. A rotation then leads to the following changes

~B→ R~B, ψ→ Uψ, ~B ·~σ ψ→ U
(

~B ·~σ ψ
)

. (2.150)

where the rotation in Pauli spinor space can be described by means of a 2 × 2 unitary

matrix (SU(2) group).

Rotational covariance means that

(R~B) ·~σ Uψ = U
(

~B ·~σ ψ
)

(2.151)

that is, acting with the rotated operator after rotating the spinor is the same as rotating

the spinor after acting with the operator. The above requirement leads to

⇒ U−1(R~B) ·~σ Uψ = ~B ·~σ ψ ⇒ (R~B) · (U−1~σ U)ψ = ~B ·~σ ψ (2.152)

which is satisfied if

U−1σ i U = Ri
jσ

j (2.153)

Having this result in our hands, we can conclude that the expectation value of the spin

operator transforms as a normal three-dimensional vector under rotations, i.e.,

ψ′†~σψ′ = R(ψ†~σψ) (2.154)

This behavior is far from trivial. Using the notation ~σ makes sense only because of this

property.

Explicitly, Pauli spinor rotations can be written

ψ′ = Uψ = e−iθ~σ ·~n/2ψ. (2.155)



32 2. Relativistic wave equations

For a rotation about the z axis we can write

U3 ≡ U(12) ≡ e−iθ,σ3/2 =

(

e−iθ/2 0

0 eiθ/2

)

=

(

cos θ2 − i sin θ
2 0

0 cos θ2 + i sin θ
2

)

= 1 cos
θ

2
− iσ3 sin

θ

2
≈ 1− iθ

σ3

2
= 1−θ

[σ1

2
,
σ2

2

]

(2.156)

For an infinitesimal rotation about the z axis we can check that
(

1+ iθ
σ3

2

)

σi

(

1− iθ
σ3

2

)

=
[

δi j +θ
(

−δ1
i δ

2
j + δ

2
i δ

1
j

)

]

σ j =
(

1+ iθJ3

)

i j
σ j. (2.157)

This result is in agreement with Eq. (2.153).

In summary, rotational covariance of the Schrödinger-Pauli equation implies specific

behaviors of Pauli spinors under rotations. We will see an analogous discussion in the

case of Dirac spinors.

2.2.8 Excursus: Lorentz transformations

We have already reminded ourselves that Lorentz transformations enjoy the property

of leaving four-dimensional scalar products unchanged. In particular, we have written

Eq. (2.22), which can be rewritten in several equivalent ways

LµνLµ
σ = δσν (2.158)

LµνLµ
σ = gνσ (2.159)

LµνLµσ = δνσ (2.160)
(

Lνµ
)T

Lµσ = δνσ ⇒ LT = L−1 (2.161)

Yet another equivalent way is

gµν = gρσLρµLσν (g = LTgL) (2.162)

Due to the above properties, Lorentz transformations must have

|det L| = 1, |L0
0| ≥ 1. (2.163)

(The second relation follows from Eq. (2.158) with ν = 0 and σ = 0)

Lorentz transformations form a group, the Lorentz group, denoted as O(1, 3). Trans-

formations with det L = +1 and L0
0 ≥ 1 form a continous subgroup named the restricted

Lorentz group, SO+(1, 3). Addition of the space inversion and time inversion tranforma-

tions complete the group.

Transformations of the restricted Lorentz group can be written in an infinitesimal

form, which is given by the following equation

Lµν ≈ δµν +
3

∑
α=0

3

∑
β>α

ǫαβM(αβ)µ
ν (2.164)
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The indices α and β denote if we are making a boost (one of the two indices must be 0)

or a rotation (both indices must be spatial). For instance, (αβ) = (1 2) denotes a rotation

about the z axis.

Any finite Lorentz transformation can be seen as a combination of several succesive

infinitesimal transformations and can be written in an exponential form as (fixing α and

β)

L(αβ)µ
ν = eǫM(αβ)µ

ν . (2.165)

In order for transformation (2.164) to be a Lorentz transformation, we need to check

that, for anyα and β,

gρσLρµLσν = gµν

gρσLρµLσν = gρσ
(

δρµ +ǫMρ
µ

)(

δσν +ǫMσ
ν

)

≈ gµν +ǫ
(

gµσMσ
ν + gρνMρ

µ

)

= gµν +ǫ
(

Mµν + Mνµ

)

(2.166)

This means that the tensor M must be antisymmetric in the µ and ν indices, i.e.,

Mµν = −Mνµ . (2.167)

The “generators” of the infinitesimal transformations can be written down explicitly

as

M(αβ)µ
ν = gαµδβν − gβµδαν (2.168)

M(αβ)
µν = δαµδ

β
ν − δβµδαν (2.169)

This expression is in agreement with (2.166). We can also check that the expression is

correct starting from the explicit expressions of some Lorentz transformation. Let’s start

from a rotation about the z axis by an angle ǫ

L(12) =











1 0 0 0

0 cosǫ − sinǫ 0

0 sinǫ cosǫ 0

0 0 0 1











ǫ→0≈











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











+ǫ











0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0











(2.170)

The last matrix in fact corresponds to

M(12)µ
ν = g1µδ2

ν − g2µδ1
ν (2.171)

(the only nonzero elements are for µ = 1 and ν = 2 and the value is −1, or for µ = 2 and

ν = 1 and the value is +1).

We can check also a boost in the x direction6

L(01) =











coshǫ sinhǫ 0 0

sinhǫ coshǫ 0 0

0 0 1 0

0 0 0 1











ǫ→0≈











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











+ǫ











0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0











(2.172)

6Remeber that ǫ in this case represents the rapidity ǫ = ln[γ(1 +β)] = ln
√

(1 + v/c)/(1− v/c).
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The last matrix in fact corresponds to

M(01)µ
ν = g0µδ1

ν − g1µδ0
ν (2.173)

(the only nonzero elements are for µ = 0 and ν = 1 and the value is 1, or for µ = 1 and

ν = 0 and the value is +1). The matrix is not antisymmetric, but this is because we have

used it in the form with a contravariant and a covariant index. As soon as we lower the

contravariant index, we obtain an antisymmetric matrix.

We can write down the algebra of the generators of Lorentz transformations

[

M(αβ), M(γδ)
]

= −gαγM(βδ) − gβδM(αγ) + gαδM(βγ) + gβγM(αδ). (2.174)

This is what fundamentally defines the Lorentz group. The standard transformations in

four-dimensional space are just one possible representation of this algebra (we could call

it the vector representation). It is possible to find other representations that fulfill this

algebra. Note that we used the term “representation” with two different meanings: when

we speak about a group representation, we mean a set of transformations (acting on some

vector space with certain dimensions) that satisfies the algebra of the group. When we

spoke about the standard or chiral representations of Dirac matrices, we simply meant

two different ways of writing the Dirac matrices, corresponding to two different bases

in the Dirac spinor space. When necessary to avoid confusion, we will speak about a

“standard basis” and a “chiral basis.”

2.2.9 Dirac equation and Lorentz transformations

The Dirac equation reads

(iγµ∂µ −m)ψ(x) = 0 (2.175)

The application of Lorentz transformations leads to

(iγµ∂′µ −m)ψ′(x′) ?
= 0. (2.176)

where

x′µ = Lµνxν , ∂′µ = Lµ
ρ∂ρ (2.177)

In order for the Dirac equations to be relativistically covariant, the spinor has to trans-

form in the appropriate way under Lorentz transformations. We have to find a matrix in

Dirac space that describes this transformation

ψ′(x′) = Λψ(x) (2.178)

and for which (compare with Eq. (2.152))

Λ−1(iγµ∂′µ −m)Λψ(x) = (iγµ∂µ −m)ψ(x) = 0. (2.179)
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In practice, the above identity is guaranteed if there exist a matrix for which (compare

with Eq. (2.153))

Λ−1γµΛ = Lµνγ
ν , (2.180)

i.e., the effect of Λ is to transform the γ matrices formally as the components of a four-

vector (justifying a posteriori why we denote them with an index µ).

We assume that the infinitesimal form of the matrix we are looking for can be written

as

Λ ≈ 1− i

2

3

∑
α=0

3

∑
β=0

ǫαβσ
αβ (2.181)

Then, we can write the infinitesimal transformations (we focus for the moment on a

transformation with a specificα and β)

Λ−1γµΛ ≈
(

1+
i

2
ǫσαβ

)

γµ
(

1− i

2
ǫσαβ

)

= γµ +
i

2
ǫσαβγµ − i

2
ǫγµσαβ

= γµ +
i

2
ǫ
[

σαβ,γµ
]

(2.182)

Lµνγ
ν ≈ γµ +ǫM(αβ)µ

νγ
ν (2.183)

and the covariance condition (2.180) can be written as

i

2

[

σαβ,γµ
]

= M(αβ)µ
νγ
ν = gαµγβ − gβµγα . (2.184)

The above condition is solved by the following explicit combination

σαβ =
i

2

[

γα ,γβ
]

. (2.185)

Let us check

i

2

[

σαβ,γµ
]

= −1

4

[

[

γα ,γβ
]

,γµ
]

= −1

4

[

γαγβ,γµ
]

+
1

4

[

γβγα ,γµ
]

(2.186)

using

[ab, c] = a{b, c} − {c, a}b (2.187)

we obtain

i

2

[

σαβ,γµ
]

= −1

2
γαgβµ +

1

2
gαµγβ +

1

2
γβgαµ − 1

2
gβµγν

= gαµγβ − gβµγα = M(αβ)µ
νγ
ν .

(2.188)

We could check that the σαβ generators respect the same algebra as the M(αβ) genera-

tors. They form therefore another representation of the Lorentz group, which we can call

the spinor representation.



36 2. Relativistic wave equations

We can write the generators of the Λ transformations explicitly in chiral basis

σ i j =
i

2

[

γi,γ j
] CR
= εi jk

(

σk 0

0 σk

)

, (2.189)

σ0i =
i

2

[

γ0,γi
] CR
= i

(−σ i 0

0 σ i

)

. (2.190)

In standard basis

σ i j SR
= εi jk

(

σk 0

0 σk

)

, σ0i SR
= i

(

0 σ i

σ i 0

)

. (2.191)

Writing the Dirac spinors in chiral basis as

ψ =

(

ψL

ψR

)

, (2.192)

from the explicit (block-diagonal) form of the generators we can conclude that Lorentz

transformations act separately on the upper and lower components of the spinor (in chiral

basis). Rotations transform upper and lower components in the same way, while boost act

differently on upper and lower components. The fact that the generators can be written

in block-diagonal form is an indication that the spinor representation we are using is in

fact reducible, and we could wonder if it is possible to find simpler representations. We

will not investigate further this topic, but this leads to the introduction of Weyl spinors

(see, e.g., Sec. 2.3 and 2.7 of Ryder, or Sec. 2.5 and 2.6 of Maggiore).

The explicit form of a finite boost transformation in chiral representation is

Λ(0i) = e−
i
2ǫσ

0i CR
=

(

e−ǫσ
i/2 0

0 eǫσ
i/2

)

. (2.193)

In particular, a boost in the z direction can be written as

Λ(03) = e−
i
2ǫσ

03 CR
=

(

e−ǫσ
3/2 0

0 eǫσ
3/2

)

=

(

cosh ǫ
2 −σ3 sinh ǫ

2 0

0 cosh ǫ
2 +σ

3 sinh ǫ
2

)

.

(2.194)

For a generic boost in the ~n direction we can use a vector of boost parameters ǫ~n. The

final result is simple (although the steps to obtain it are not so simple):

Λ = e−
i
2ǫni·σ0i CR

=

(

e−ǫ~n·~σ/2 0

0 eǫ~n·~σ/2

)

=

(

cosh ǫ
2 −~n ·~σ sinh ǫ

2 0

0 cosh ǫ
2 +~n ·~σ sinh ǫ

2

)

.

(2.195)

In standard representation

Λ = e−
i
2ǫni·σ0i SR

=

(

cosh ǫ
2 ~n ·~σ sinh ǫ

2

~n ·~σ sinh ǫ
2 cosh ǫ

2

)

. (2.196)
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It is useful to explicitly consider boosts from the rest-frame of a particle, where the

momentum is kRF = (m, 0, 0, 0), to a frame where the momentum is k = (E, k1, k2, k3),

with |~k| =
√

E2 −m2. According to what is more convenient, we can express the boosts

in terms of E and m, or |~k| and m. The rapidity (the boost parameter) must be

ǫ =
1

2
ln

E + |~k|
E− |~k|

, (2.197)

which means also

cosh
ǫ

2
=

√

E + m

2m
=

E + m
√

2m(E + m)
sinh

ǫ

2
=

√

E−m

2m
=

|~k|
√

2m(E + m)
. (2.198)

The boost matrices, for any final momentum k, can be written in standard representa-

tion as [29, p. 52]

Λ(k)
SR
=

√

E + m

2m













1 0 k3

E+m
k1−ik2

E+m

0 1 k1+ik2

E+m
−k3

E+m
k3

E+m
k1−ik2

E+m 1 0
k1+ik2

E+m
−k3

E+m 0 1













=

√

E + m

2m

(

1
~k·~σ
E+m

~k·~σ
E+m 1

)

, (2.199)

while in chiral representation, they can be written as [28, p. 46] 7

Λ(k)
CR
=

√

E + m

2m

(

1− ~k·~σ
E+m 0

0 1 +
~k·~σ
E+m

)

. (2.200)

2.2.10 Parity transformation

What about the action of parity transformations (i.e., space inversion)? The correspond-

ing matrix is

Pµν =











1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1











(2.201)

As done before with the restricted Lorentz transformations, we have to find the ap-

propriate Dirac transformation that guarantees

Λ−1
P (iγµ∂′µ −m)ΛPψ(x) = (iγµ∂µ −m)ψ(x). (2.202)

In practice, we need to fulfill the conditions

Λ−1
P γ0ΛP = γ0, −Λ−1

P γiΛP = γi. (2.203)

7To see the connection with the notation of Peskin–Schroeder, it is convenient to use relations such as
√

(E + |k|) +
√

(E− |k|) =
√

2(E + m) and
√

(E + |k|)−
√

(E− |k|) =
√

2(E−m).
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The solution is

ΛP = κγ0 (2.204)

with κ = ±1,±i. A spinor will change in the following way (leaving the imaginary

solutions aside)

ψ′ = ±γ0ψ. (2.205)

The two opposite signs correspond to spinors with opposite intrinsic parity.

2.2.11 Spinor bilinear expressions

The transformation matrix we obtained to describe the effect of Lorentz transformations

on spinors have the property

Λ−1 = γ0Λ†γ0. (2.206)

The relation holds also for ΛP. Note that this property clearly shows that the Λ transfor-

mation matrices are not unitary, which is also related to the fact that the σαβ generators

are not Hermitian.

We can explicitly check the above statement for infinitesimal transformations

γ0Λ(αβ)†γ0 ≈ γ0
(

1− i

2
ǫσαβ

)†
γ0

= γ0γ0 +
i

2
ǫγ0σαβ†γ0

= 1+
i

2
ǫγ0σαβ†γ0

= 1+
i

2
ǫσαβ ≈ Λ(αβ)−1

(2.207)

In the last step, we used

γ0σαβ†γ0 = − i

2
γ0
[

γβ†,γα†
]

γ0 = − i

2
γ0
(

γβ†γα† − γα†γβ†
)

γ0

= − i

2

(

γ0γβ†γ0γ0γα†γ0 − γ0γα†γ0γ0γβ†γ0
)

= − i

2

(

γβγα − γαγβ
)

= σαβ

(2.208)

We are now in the position to check the nature of the following bilinear combinations

under Lorentz transformations

ψψ Lorentz scalar (2.209)

ψγ5ψ Lorentz pseudo-scalar (2.210)

ψγµψ Lorentz vector (2.211)

ψγ5γ
µψ Lorentz pseudo-vector (2.212)
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For instance, in the first case

ψψ = ψ†γ0ψ −→ ψ†Λ†γ0Λψ = ψ†γ0γ0Λ†γ0Λψ = ψΛ−1Λψ = ψψ. (2.213)

The above relation works also with ΛP.

The pseudoscalar combination works in the same way, since Λ contains an even num-

ber of γ matrices and therefore commutes with γ5

ψγ5ψ −→ ψ†Λ†γ0γ5Λψ = ψ†γ0γ0Λ†γ0γ5Λψ = ψΛ−1γ5Λψ = ψγ5ψ. (2.214)

but for parity transformations there is a difference, since ΛP = γ0 and therefore anticom-

mutes with the γ5

ψγ5ψ
parity−→ ψ†Λ†Pγ

0γ5ΛPψ = ψ†γ0γ0Λ
†
Pγ

0γ5ΛPψ = ψΛ−1
P γ5ΛPψ = −ψγ5ψ. (2.215)

Checking the vector combination is relatively easy, once we know (2.180)

ψγµψ −→ ψ†Λ†γ0γµΛψ = ψ†γ0γ0Λ†γ0γµΛψ = ψΛ−1γµΛψ = Lµνψγ
νψ. (2.216)

We are now in the position of justifying why we used exactly this kind of combination to

introduce the concept of a Dirac four-current in Sec. 2.2.5.

2.2.12 Plane-wave solutions

We know that the Dirac equation possesses four plane-wave solutions, two with positive

and two with negative energy. We now want to obtain the explicit expression for these

solutions in the chiral or standard representation.

We first focus on the positive-energy solutions. We can study the solutions in the rest-

frame of the particle, where kRF = (m, 0, 0, 0), and then boost to a frame where the particle

has a generic momentum k, using the explicit expression for boosts in Dirac space.

The expression for our positive-energy plane-wave solution is (for the moment we do

not worry about the normalization)

ψ(x) = u(k)e−ikx (2.217)

The Dirac equation implies for the spinor u

(/k−m)u = 0 (2.218)

In the CM frame this becomes simply

(mγ0 −m)u(0) =











0 0 0 0

0 0 0 0

0 0 −2m 0

0 0 0 −2m











u(0) = 0. (2.219)
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The solutions can be written as

u1(0)
SR
=
√

2m











1

0

0

0











, u2(0)
SR
=
√

2m











0

1

0

0











. (2.220)

The specific choice of spinors is arbitrary: in this case we have taken eigenvectors of σ3,

but we could have chosen any generic direction. Careful: there are two different common

choices for the normalization of the spinors. Here, we follow the conventions of Peskin–

Schroeder, although other books, e.g., Mandl–Shaw and Ryder, prefer to normalize the

spinor to 1, i.e., they have an extra 1/
√

2m in front.

We can redo the calculation in chiral representation, or just apply the unitary transfor-

mation (2.101) to change from one to the other. In any case

u1(0)
CR
=
√

m











1

0

1

0











, u2(0)
CR
=
√

m











0

1

0

1











. (2.221)

Looking at Eq. (2.199), we realize that boosting a u spinors in standard representation

(not in chiral representation) is the same as applying these transformations

u(~k)
SR
=

(/k + m)
√

2m(E + m)
u(0), u(~k)

SR
= u(0)

(/k + m)
√

2m(E + m)
. (2.222)

With these ingredients, we can then compute the explicit form of a u(~k) spinor

u1(~k)
SR
=

1√
E + m











E + m

0

k3

k1 + ik2











, u2(~k)
SR
=

1√
E + m











0

E + m

k1 − ik2

−k3











. (2.223)

Note that often the spinor is written as a function of the four-momentum k. However,

due to the on-shell condition k2 = m2, in reality the spinor can be seen as depending only

on the three-momentum~k.

We can do similar steps for the chiral representation and obtain

u1(~k)
CR
=

1
√

2(E + m)











E + m− k3

−k1 − ik2

E + m + k3

k1 + ik2











, u2(~k)
CR
=

1
√

2(E + m)











−k1 + ik2

E + m + k3

k1 − ik2

E + m− k3











. (2.224)
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The representation above can be useful to discuss the so-called ultrarelativistic limit,

where masses are neglected and thus |k| = E. If we consider a particle with momentum

in the z direction, we obtain

u1(~k)
CR≈
√

2E











0

0

1

0











, u2(~k)
CR≈
√

2E











0

1

0

0











. (2.225)

The above expressions describe the result of boosting with a momentum k in a generic

direction a spinor which has spin oriented along z in its rest frame. We could build other

expressions where the spin is oriented along the direction of momentum.

For the negative-energy solutions, we choose the following strategy [32]. We want

to describe a plane-wave solution of the Dirac equation with k2 = m2 and k0 < 0. If

we choose p = −k, we need a solution with p2 = m2 and p0 > 0. In practice, instead

of having a negative-energy solution moving with momentum~k, we look for a positive-

energy solution moving with momentum −~k. Our trial solution is then

ψ(x) = u(~k)e−ikx = v(~p)e+ipx (2.226)

The spinor v has to solve the equation

(/p + m)v(~p) = 0 (2.227)

(note the sign change for the mass term).

To solve this equation, we use a trick. We make use of a matrix with the following

properties

C−1γµC = −γµ∗, (2.228)

explicitly, in both our standard and chiral representations C corresponds to

C = −iγ2 (2.229)

with the properties

C = C−1 = C†. (2.230)

We can check that

v(~p) = Cu(~p)∗ (2.231)

is indeed a solution of the Dirac equation for the negative-energy states

/pv(~p) = CC−1 pµγ
µCu(~p)∗ = C

[

−/pu(~p)
]∗

= C
[

−mu(~p)∗
]

= −mv(~p). (2.232)

Therefore, to obtain the v spinors that represent a solution of the Dirac equation for

negative-energy states, we simply take the positive-energy solutions and apply the tran-

formation (2.231). This transformation is called charge conjugation because it turns par-

ticles into antiparticles. To uphold this interpretation of the charge conjugation transfor-

mation, we can also note that ifψ solves the Dirac equation with coupling to an elm field,
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Eq. (2.119), then ψC = Cψ∗ solves the equation

[

i

(

/∂ + ie /A

)

−m

]

ψC = 0, (2.233)

i.e., the Dirac equation with coupling to an elm field, but with an opposite charge.

The rest-frame solutions look like

v1(0)
SR
=
√

2m











0

0

0

−1











, v2(0)
SR
=
√

2m











0

0

1

0











. (2.234)

The rest-frame solutions are orthogonal and normalized to 2m, i.e.,

u†i (0)u j(0) = 2m δi j, v†i (0)v j(0) = 2m δi j, ui(0)
†v j(0) = 0. (2.235)

We can obtain the solutions for a momentum p by boosting or by applying charge

conjugation to the positive-energy solutions. In any case, the final outcome is

v1(~p)
SR
= − 1√

E + m











p1 − ip2

−p3

0

E + m











, v2(~p)
SR
=

1√
E + m











p3

p1 + ip2

E + m

0











. (2.236)

Note that boosting a v spinors in standard representation (not in chiral representation)

is the same as acting with

v(~p)
SR
=

(−/p + m)
√

2m(E + m)
v(0), v(~p)

SR
= v(0)

(−/p + m)
√

2m(E + m)
. (2.237)

With these results in our hands, we can check several properties of the spinors. First

of all, we have already shown that combinations uu are Lorentz scalars, therefore we can

compute them in the rest frame and obtain

ui(~k)u j(~k) = ui(0)u j(0) = u†i (0)γ
0u j(0) = 2m δi j, (2.238)

vi(~k)v j(~k) = vi(0)v j(0) = v†i (0)γ
0v j(0) = −2m δi j, (2.239)

ui(~k)v j(~k) = 0. (2.240)

Note that these combinations, where the Dirac indices are contracted, must give the same

result in any representation.

Next, we can also compute combinations of the type u†u (and check that they are not

scalars, but rather correspond to the zeroth component of a four-vector). Again, we can
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choose any representation to do the computation. For instance, we work in standard

representation and use Eq. (2.222) to apply a boost. We will need the relation

(/k + m)γ0(/k + m) = (2k0 − γ0/k + γ0m)(/k + m)

= 2k0(/k + m) + γ0(m2 − k2) = 2k0(/k + m)
(2.241)

and also

ur(0)(/k + m)us(0)
SR
= ur(0)(k

0γ0 + m)us(0) = 2m(E + m)δrs (2.242)

where the last step can be conveniently computed in standard representation. We can

obtain

u†r (~k)us(~k) =
1

2m(E + m)

(

(/k + m)ur(0)
)†
(/k + m)us(0)

=
1

2m(E + m)
ur(0)

†(/k + m)†(/k + m)us(0)

=
1

2m(E + m)
ur(0)

†γ0γ0(/k + m)†γ0γ0(/k + m)us(0)

=
1

2m(E + m)
ur(0)(/k + m)γ0(/k + m)us(0)

=
1

2m(E + m)
2k0ur(0)(/k + m)us(0) = 2k0δrs.

(2.243)

For the v spinors, we can either check the computation in a similar way, or use charge

conjugation to show that

v†r (~k)vs(~k) = u†∗r (~k)C†Cus(~k)
∗ =

(

u†r (~k)us(~k)
)∗

= 2k0δrs. (2.244)

We can also show that

u†r (~k)vs(−~k) = v†r (~k)us(−~k) = 0. (2.245)

More generally, we can obtain the expression for uγµu using the effect of a Lorentz

boost

ur(~k)γ
µus(~k) = ur(0)Λ

−1(k)γµΛ(k)us(0)

= Lµνur(0)γ
νus(0)

= Lµνur(0)
kνRF

m
us(0) = 2kµδrs.

(2.246)

which is a vector as expected. In the last line, we made use of the fact that we can compute

explicitly the expression ur(0)γµus(0) in the rest frame: the γ0 term gives the same result

as Eq. 2.243, the γi terms give 0, corresponding to the components of kRF The result for

vγµv is identical.

It is sometimes useful to know the equations satisfied by the barred versions of the

spinors. We remind ourselves that the standard spinors fulfill

(/k−m)u = 0, (/k + m)v = 0. (2.247)
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For the barred spinors we can obtain (it is sufficent to take the barred version of the

previous equations):

u(/k−m) = 0, v(/k + m) = 0. (2.248)

Last but not least, we need to introduce the so-called positive and negative energy

projectors. They are defined as

Λ+
AB = ∑

r

urA(~k)urB(~k), Λ−AB = −∑
r

vrA(~k)vrB(~k). (2.249)

They are Dirac matrices (outer products of two Dirac spinors).

We can check that they are projectors since

(

Λ+
)2

= ∑
r

∑
s

ur(~k)ur(~k)us(~k)us(~k) = 2m ∑
r

∑
s

ur(~k)δrsus(~k) = 2mΛ+, (2.250)

(

Λ−
)2

= ∑
r

∑
s

vr(~k)vr(~k)vs(~k)vs(~k) = −2m ∑
r

∑
s

vr(~k)δrsvs(~k) = 2mΛ−. (2.251)

We can check that the projectors are orthogonal and complete

Λ±ABΛ
∓
AB = 0, Λ+

AB +Λ−AB = 2m1AB. (2.252)

Due to Dirac’s equation, we know that

(/k−m)Λ+ = 0 ⇒ Λ+ = A(/k + m), (2.253)

(/k + m)Λ− = 0 ⇒ Λ− = B(/k−m). (2.254)

To fulfill Eqs. (2.250), (2.251), (2.252), we need A = 1 and B = −1.

In conclusion, the result is

Λ+ = ∑
r

ur(~k)ur(~k) = /k + m, (2.255)

Λ− = −∑
r

vr(~k)vr(~k) = −/k + m. (2.256)

2.2.13 Spin and helicity [optional]

In our analysis of the Dirac equation, we have identified two degenerate positive-energy

and two negative-energy states. If we confine ourselves to the rest-frame of the particle

(which is possible only for massive particles), we can introduce the Pauli spin operator

(see also Eq. (2.191))

Σk =
1

4
ǫi jkσ

i j SR
=

1

2

(

σk 0

0 σk

)

. (2.257)

The last expression is valid also in chiral representation, see Eq. (2.189). Spinors can be

eigenvectors of this operator with eigenvalues +1 and −1. We have seen that the two

states correspond to different energies in the presence of a magnetic field, which leads us
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to the identification of the two states as “spin up” and “spin down.” The operators have

the property
[

Σi,Σ j] = iǫi jkΣk (2.258)

which is what we expect for a spin-1/2 operator.

This discussion is limited to the rest frame of the particle. In spite of the fact that spin

is essentially tied to relativistic invariance, it is nontrivial to build a spin four-vector. In

order to distinguish the two independent states for u and v spinors in any frame, the

most common choice is to introduce the helicity operator of a particle with momentum~k,

defined as

helicity = h(~k) = k̂ ·~Σ (2.259)

where k̂ denotes the unit vector in the direction of the particle’s momentum. In other

words, helicity corresponds to the projection of “spin” along the direction of motion.

The helicity operators commutes with the Hamiltonian~a ·~k +βm. Let us consider the

spinors in the form of Eqs. (2.223) and (2.236) and a momentum ~kz with k1 = k2 = 0.

Applying the helicity operator we can explicitly check in standard representation that

h(~kz)u1(~kz) = u1(~kz), h(~kz)u2(~kz) = −u2(~kz), (2.260)

h(~kz)v1(~kz) = −v1(~kz), h(~kz)v2(~kz) = v2(~kz). (2.261)

Our choice of spinors 1 and 2 corresponds to helicity eignestates if the momentum of the

particle is in the z direction. It is possible to use spinors with helicity along a generic k.

The only crucial feature is that there are obviously always two degenerate states.

There is still an asymmetry in the labeling of u and v spinors for what concerns the

different sign in the helicity eigenvalue. The final justification will be given in Sec. 3.5.3.

2.2.14 Feynman interpretation of negative-energy solutions [optional]

Before closing this chapter, let us discuss again the question of negative-energy solutions

(see [3]). Although the formalism of Quantum Field Theory better clarifies the issue, it is

possible to introduce an interpretation of the negative-energy solutions, due to Feynman,

that to a certain extent provides a bridge between single-particle wave equations and

quantum fields.

This interpretation is more easily discussed in the Klein–Gordon case. We have found

that we can have solutions of this form

φ±(x) = e∓iωkt+i~k·~x (2.262)

with positive and negative energies. We could say that the negative energy solutions are

equivalent to positive energy solutions propagating backward in time,

φ−(x) = e−iωk(−t)+i~k·~x, (2.263)
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but it is not clear if this has any physical meaning. Suppose, however, that we take a

positive-energy solution and take its complex conjugate

φ+∗(x) = eiωkt−i~k·~x, (2.264)

This is equivalent to a positive energy solution, propagating backward in time and with

opposite~k. This solution has a physical meaning. The Klein–Gordon equation coupled to

an elm field is
[

(∂µ + iqAµ)(∂µ + iqAµ) + m2
]

φ(x) = 0. (2.265)

Taking the complex conjugate we obtain
[

(∂µ − iqAµ)(∂µ − iqAµ) + m2
]

φ∗(x) = 0. (2.266)

Therefore,φ∗ describes an antiparticle, i.e., the same as a particle but with charge (−q).

This observation can be generalized to the effect of negative-energy solutions on any

physical process and leads to the following rule

A negative-energy Klein–Gordon particle with momentum kµ propagating

forward in time is equivalent to a positive-energy Klein–Gordon antiparticle

with momentum −kµ propagating backward in time.

This means that instead of working with negative-energy particles, we can conve-

niently switch to positive-energy antiparticles. Suppose a system absorbs a negative-

energy particle with (positive) charge q and momentum kµ = (−ωk,~k), its charge in-

creases, its energy decreases, its momentum increases. This is the same effect as emitting a

positive-energy antiparticle with momentum (ωk,−~k).
This leads also to a clarification of the problem of the the Klein–Gordon current,

definded in Eq. (2.55). Instead of interpreting it as a “probability current,” let us inter-

pret it as a charge current, multiplying it by the charge of the particle, i.e.,

jµ(x) =
iq

2m

(

φ∗(x)∂µφ(x)−φ(x)∂µφ∗(x)
)

= q
kµ

m
φ∗(x)φ(x). (2.267)

With this simple change, we can stop worrying about the presence of negative densities,

since we are now talking about charge densities, not probability densities.

Not only. We can also observe that the current generated by negative-energy solutions

with kµ = (−ωk,~k) is equal to the current generated by a particle with pµ = −kµ =

(ωk,−~k), but with charge −q, i.e., the current of an antiparticle with positive energy and

momentum −~k.

For fermions, the situation is less straightforward because of the presence of spin and

because the current density was positive also for the negative-energy solutions.

Similar to the Klein–Gordon case, we note that the solutions were of the form

ψ+(x) = u1,2(k)e
−iωkt+i~k·~x (2.268)

ψ−(x) = u3,4(k)e
iωkt+i~k·~x (2.269)
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with positive and negative energies. The negative energy solutions are equivalent to

positive energy solutions propagating backward in time

ψ−(x) = u3,4(~k)e
−iωk(−t)+i~k·~x. (2.270)

To match this into something with physical meaning, we consider Cψ∗, which solves the

Dirac equation for a particle with an opposite charge (and opposite spin), i.e., it describes

an antiparticle. Therefore, we consider the function

Cψ+∗(x) = v1,2(~k)e
iωkt−i~k·~x. (2.271)

which describes an antiparticle with momentum~k and a certain spin in the rest frame.

This is equivalent to a positive-energy solution, propagating backward in time, with mo-

mentum −~k, and with opposite spin in the rest frame.

Feynman’s hypothesis can in this case can be phrased as follows

A negative-energy fermion with momentum kµ and spin projection sz prop-

agating forward in time is equivalent to a positive-energy anti-fermion with

momentum −kµ and spin projection −sz propagating backward in time.

There is only a further subtlety: for fermions, sometimes we must take care of extra minus

signs due to the fact that they must obey antisymmetrization rules. This should become

clear only later in the course. This has an effect on our definition of the current. The

charge current generated by positive energies is

jµ = qū(~k)γµu(~k) = 2q
(

ωk, ~k
)

(2.272)

Adding the extra minus sign due to anticommutation rules, the current generated by

negative energies is

jµ = −qv̄(−~k)γµv(−~k) = −2q
(

ωk, −~k
)

(2.273)

which corresponds to the current of an antiparticle with momentum −~k, as for the Klein–

Gordon case.

2.3 Conclusions

In this chapter, we have dealt with relativistic wave equations that try to generalize the

nonrelativistic Schrödinger equation. In the next chapter we will see that the formalism

of field equations is more appropriate to deal with relativistic quantum mechanics.

Typical questions that can come out during the exam:

1. Effects of boosts on Dirac spinors;

2. Prove that urus is a scalar and compute it;

3. Discuss the positive or negative energy plane-wave solutions of the Dirac equation;

4. Compute the positive or negative energy projectors.
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Free quantum fields

3.1 Classical field theory

Apart from the lecture notes of prof. Miglietta, the topics covered in this section are based

on Goldstein [20], Ch. 11, and Mandl–Shaw [26], Ch. 2.

3.1.1 The principle of least action

We remember that the action is defined as the time integral of the Lagrangian

S ≡
∫ t1

t0

dt L(q, q̇; t). (3.1)

The action depends on the “path” chosen to go from a state at time t0 to another state

at time t1. Here path means a function q(t), i.e., the time dependence of the generalized

coordinate q. We can define an action for any of these paths. Technically, we say that the

action is a functional of the path (i.e., it is a function that depends on another function).

We can compute what is the difference in the action for a variation of a given path, keep-

ing the starting and ending points fixed. For instance, if the path is described by some

function q(t), we can take

q′(t) = q(t) + δq(t) with δq(t0) = δq(t1) = 0. (3.2)

The corresponding change in the action is called a “functional derivative” and is mathe-

matically indicated as δS[q]/δq(t).
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Figure 3.1: Example of two paths to compute the action

In classical mechanics, the path that the system follows is the one that corresponds to

a stationary action (“least-action principle”). This means that if we try to compute the

action for a different path, obtained by some small variation of the first, we should get

a vanishing variation of the action. In other words, the action for the actual path is a

minimum (or maximum). In mathematical notation this is written as

δS[q]

δq(t)
= 0. (3.3)

For our purposes, the functional derivative can be defined as

δG[ f (x′)]
δ f (x)

= lim
ǫ→0

G[ f (x′) +ǫδ(x− x′)]− G[ f (x′)]
ǫ

. (3.4)

The condition of stationary action leads to (assuming there is no explicit dependence

of the Lagrangian on time)

δS =
∫ t1

t0

dt

{

∂L

∂q
δq +

∂L

∂q̇
δq̇

}

=
∫ t1

t0

dt

{

∂L

∂q
δq +

∂L

∂q̇
dt(δq)

}

=
∫ t1

t0

dt δq

{

∂L

∂q
− dt

∂L

∂q̇

}

+
∫ t1

t0

dt dt

(

∂L

∂q̇
δq

)

=
∫ t1

t0

dt δq

{

∂L

∂q
− dt

∂L

∂q̇

}

+
✟✟✟✟✟✟✟(

∂L

∂q̇
δq

)∣

∣

∣

∣

t1

−
✟✟✟✟✟✟✟(

∂L

∂q̇
δq

)∣

∣

∣

∣

t0

.

(3.5)

In conclusion, to have δS = 0 for any variation δq, we need to impose the Euler–Lagrange

equations (or equations of motion):

∂L

∂qi
− dt

∂L

∂q̇i
= 0. (3.6)

Let us make a super-simple example. Suppose we have a free particle with mass m = 2

that moves along the x coordinate from x0 = 0 at t0 = 0 to x1 = b at t1. Our generalized

coordinate corresponds in this case to the standard coordinate q = x. The Lagrangian is

L = q̇2. (3.7)

We try two different paths A and B: a straight line and a parabolic line. Their equations

are

qA(t) =
b

t1
t, qB(t) =

b

t2
1

t2, (3.8)



3.1 Classical field theory 51

and their derivatives

q̇A(t) =
b

t1
, q̇B(t) = 2

b

t2
1

t. (3.9)

We obtain for the respective actions

SA =
b2

t2
1

∫ t1

0
dt =

b2

t1
, SB = 4

b2

t4
1

∫ t1

0
dt t2 =

4

3

b2

t1
. (3.10)

We checked that path A leads to a smaller action than path B. We can compute what is

the path implied by the Euler–Lagrange equations:

∂L

∂q
= 0, dt

∂L

∂q̇
= dt(2q̇) = 2q̈. (3.11)

Not surprisingly, the principle of least action tells us that q̈ = 0 (corresponding to the

fact that this system has no acceleration), which integrates to

q(t) =
b

t1
t (3.12)

if we want to fulfill the initial and final conditions.

The principle of least action can be used as the fundamental postulate to derive all clas-

sical mechanics. Feynman extended the use of the principle as the fundamental starting

point of his formulation of Quantum Mechanics based on the “path-integral formalism.”

This particular formalism will turn out to be useful to study Quantum Field Theory, but

will not be used in this introductory course.

3.1.2 Hamiltonian

Let us briefly review the concept of Hamiltonian. We start by taking the derivative of the

Lagrangian with respect to time

dtL =
∂L

∂q
dtq +

∂L

∂q̇
dtq̇ + ∂tL (3.13)

If the Lagrangian does not depend explicitly on time (i.e., any time translation leaves it

unchanged), we have

∂tL = 0, (3.14)

and from the equations of motion
∂L

∂q
= dt

∂L

∂q̇
. (3.15)

In conclusion

dtL = dt

(

∂L

∂q̇
q̇

)

⇒ dt(pq̇− L) = dtH = 0. (3.16)

From this result we conclude that the Hamiltonian is conserved. This is one particular ex-

ample of the general result of Nöther’s theorem, which we will review more completely

in Sec. 3.1.4. The Hamiltonian is the quantity that is conserved if the Lagrangian is inde-

pendent of time translations and corresponds physically to the total energy of the system.



52 3. Free quantum fields

✲ ✲ ✲

✉ ✉ ✉

✉ ✉ ✉

✛ a ✲
m

. . .

. . .

. . .

φi−1 φi φi+1 . . .

. . .

. . .

Figure 3.2: Schematic drawing of a discrete system of n particles with equal mass m connected by springs

with length a (and elastic constant κ). The variables φi denote the displacements (drawn at the bottom)

from the equilibrium position (drawn at the top).

3.1.3 From discrete to continuous systems

We start with considering a system of n particles with equal mass m connected by springs

with length a and elastic constantκ that can move only in the longitudinal direction. With

φi we denote the displacement of the particle from the equilibrium position. The kinetic

energy of each particle can be written as

Ti =
1

2
m(dtφi)

2 (3.17)

The total kinetic energy of the system is obviously

T =
1

2
m ∑

i

(dtφi)
2 (3.18)

The potential energy of the single particle can be written as

Vi =
1

2
κ(φi+1 −φi)

2. (3.19)

The total potential energy is

V =
1

2
κ∑

i

(φi+1 −φi)
2 = . . . +

1

2
κ(φi −φi−1)

2 +
1

2
κ(φi+1 −φi)

2 + . . . (3.20)

The force acting on particle i can be derived by Fi = −∂V/∂φi. We can obtain

F = −κ(φi −φi−1) +κ(φi+1 −φi), (3.21)

which corresponds to what we would expect from the balance of the forces of the two

springs acting on particle i.

The Lagrangian of the system is

L ≡ T−V =
1

2
a ∑

i

[m

a
(dtφi)

2 −κa
(φi+1 −φi

a

)2]

=
1

2
a ∑

i

[

µφ̇2
i −Y

(φi+1 −φi

a

)2]

.

(3.22)
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We have in mind to go to the continuum limit by taking a → 0 with µ (mass per unit

length) and Y (Young modulus) constant.

The Euler–Lagrange equations are

∂L

∂qi
− dt

∂L

∂q̇i
= 0. (3.23)

Applied to our system, we obtain (pay attention to the fact that the coordinate φi occurs

in the term i and (i− 1) of the total Lagrangian)

−dt
∂L

∂φ̇i
= − a

2
dt

(

2µφ̇i

)

= − a

2
2µφ̈i,

∂L

∂φi
=

a

2

∂

∂φi

[

−Y
(φi+1 −φi

a

)2
−Y

(φi −φi−1

a

)2]

=
a

2

[

2Y
φi+1 −φi

a2
− 2Y

φi −φi−1

a2

]

(3.24)

Now we go to the continuum limit. In this case, the generalized coordinatesφi become a

continuous function of the position x, therefore

φi(t)→ φ(t, x),
φi+1 −φi

a
= ∂xφ(t, x) (3.25)

and
φi+1−φi

a − φi−φi−1
a

a
= ∂2

xφ(t, x). (3.26)

The functionφ are what we call “fields.”

The Euler–Lagrange equation becomes

µ ∂2
tφ(t, x)−Y ∂2

xφ(t, x) = 0. (3.27)

The discrete system was characterized by a large numbers of equations, depending

only on t. Now we have a single equation, but with partial derivatives. The Lagrangian

becomes

L =
∫

dx
1

2

(

µ (∂tφ(t, x))2 −Y (∂xφ(t, x))2
)

≡
∫

dxL. (3.28)

The integrand is called the “Lagrangian density.”

With three spatial dimensions, we would have had to start with three independent

displacements (one longitudinal, two transverse). We could have labeled them with an

index r, i.e., φri(t). This is often referred to as a polarization index. In the continuum

limit, the set of coordinates becomes a continuous function of the position, i.e.,

φr i(t)→ φr(t,~x). (3.29)

The Lagrangian in this case becomes

L =
∫

d3xL (3.30)
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where the Lagrangian density can in general depend onφr,∂µφr, x, whereφr denote now

a generic set of fields and x is four-dimensional (the fact that we use a four-dimensional

notation for x does not mean that the theory is relativistic).

We now turn the attention to the action. For a continuous system, it becomes

S ≡
∫

Ω
d4x L(φr, ∂µφr; x). (3.31)

Here, Ω denotes a region of space and time and Γ its boundary.

Note that in natural units the action has no dimensions, d4x has dimensions [M]−4

(see Eqs. (2.33) and (2.34)). Therefore the Lagrangian density must have dimensions

[M]4. This is consistent also with the fact that in c.g.s. units the Lagrangian density is

expressed in J/m3, which means that in n.u. it can be expressed as J4.

The principle of least action in this case can be formulated as follows: δS must be zero

under a transformation of the fields

φ′r(x) = φr(x) + δφr(x) with δφr(x)
∣

∣

Γ
= 0. (3.32)

An extension of the standard calculation for the discrete case leads to the Euler–

Lagrange equations for the fields (we assume that there is no explicit dependence on

x)

δS =
∫

Ω
d4x δL

=
∫

Ω
d4x

{

∂L
∂φr

δφr +
∂L

∂(∂µφr)
∂µ(δφr)

}

=
∫

Ω
d4x δφr

{

∂L
∂φr
− ∂µ

∂L
∂(∂µφr)

}

+
∫

Ω
d4x ∂µ

(

∂L
∂(∂µφr)

δφr

)

=
∫

Ω
d4x δφr

{

∂L
∂φr
− ∂µ

∂L
∂(∂µφr)

}

+
∫

Γ
dΓµ

(

∂L
∂(∂µφr)

δφr

)

=
∫

Ω
d4x δφr

{

∂L
∂φr
− ∂µ

∂L
∂(∂µφr)

}

.

(3.33)

The last step is due to the condition that the variation δφr vanishes on the boundary Γ .

Therefore, the Euler–Lagrange equations (or equations of motion) for the fields are:

∂L
∂φr
− ∂µ

∂L
∂(∂µφr)

= 0 . (3.34)

Adding to the Lagrangian density a four-divergence (∂µ fµ) causes no change to the

equations of motions. If such a term is added, the action changes by a surface integral

over the boundary Γ . This contribution either does not depend on the fields, or, if it does,

gives no contribution to the variation of the action because δφr vanishes on the boundary

Γ . Therefore, any two Lagrangians that differ by a four-divergence are equivalent.
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In case we include also an explicit dependence of the Lagrangian on the coordinates,

already in the second line we have to add a term ∂µ(Lδxµ) (see App. 3.A). The variation

of the action should be done so that the variation of the fields and the variation of the

coordinates should vanish at the boundary

δS =
∫

Ω
d4x δφr

{

∂L
∂φr
− ∂µ

∂L
∂(∂µφr)

}

+
∫

Ω
d4x ∂µ

(

∂L
∂(∂µφr)

δφr + L δxµ
)

(3.35)

Similarly to the case of discrete systems, also in field theories we can introduce a con-

cept analogous to the generalized momentum conjugate to the generalized coordinates.

In this case, we speak about a conjugate field defined as

πr(x) =
∂L

∂φ̇r(x)
. (3.36)

We can define a Hamiltonian density by

H(x) = πr(x)φ̇r(x)−L . (3.37)

A summation over the repeated field indices is implied. The Hamiltonian is the integral

over d3x of the Hamiltonian density.

3.1.4 Symmetry transformations and Nöther’s theorem.

If the Lagrangian density is invariant under (continuous) symmetry transformations, we

can construct conserved quantities using Nöther’s theorem.

Let us first focus on the so-called internal symmetries. In this case, we consider a

transformation where the coordinates are kept unchanged, but the fields undergo a trans-

formation of the type

φr(x) −→ φ′r(x) = φr(x) + δφr(x). (3.38)

For our continuous symmetries, the δ can be considered proportional to some infinitesi-

mal parameter ǫ. The change in the Lagrangian density due to the above transformation

can be written as

δL =
∂L
∂φr

δφr +
∂L

∂(∂µφr)
δ(∂µφr)

=
✘✘✘✘✘✘✘✘✘✘✘✘✘✘{

∂L
∂φr
− ∂µ

∂L
∂(∂µφr)

}

δφr + ∂µ

(

∂L
∂(∂µφr)

δφr

)

= ∂µ

(

∂L
∂(∂µφr)

δφr

)

.

(3.39)
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In the last step we used the equations of motion.1 If the Lagrangian is invariant under

this transformation, i.e., δL = 0, then we can introduce a the four-current

jµ =
∂L

∂(∂µφr)

δφr

ǫ
(3.40)

which is “conserved,” in the sense that its four-divergence is zero. The definition of the

current contains a 1/ǫ, which denotes the parameter of the infinitesimal transformation,

to give a definition of the current that does not depend on the “size” of the transforma-

tion (examples should clarify this point better). As reminded in the previous chapter, a

vanishing four-divergence means that if we consider a three-dimensional volume V with

surface S, the rate of change of the integral of j0 in the volume is equal to the flux of ~j

through the surface. Integrating j0 over the full space, we obtain a conserved quantity. In

other words, if we define

Q =
∫

d3x j0(x) (3.41)

then dtQ = 0.

We now consider also transformations that involve coordinate transformations, i.e.,

{

xµ → x′µ = xµ + δxµ ,

φr(x)→ φ′r(x′) = φr(x) + ∆φr(x).
(3.42)

We can express the total variation of the field as (omitting the field index)

∆φ = φ′(x′)−φ(x) =
(

φ′(x′)−φ(x′)
)

+
(

φ(x′)−φ(x)
)

= δφ+ (∂νφ) δxν (3.43)

The term δφ is usually referred to as “variation in form” and is not related to the change

of coordinates.

The variation of the Lagrangian becomes now (see the steps in App. 3.A)

δL =
∂L
∂φr

δφr +
∂L

∂(∂µφr)
δ(∂µφr) + ∂µ(Lδxµ)

=
✘✘✘✘✘✘✘✘✘✘✘✘✘✘{

∂L
∂φr
− ∂µ

∂L
∂(∂µφr)

}

δφr + ∂µ

(

∂L
∂(∂µφr)

δφr

)

+ ∂µ(Lδxµ)

= ∂µ

(

∂L
∂(∂µφr)

δφr + Lδxµ
)

.

(3.44)

The conclusion is that the conserved current takes the form

jµ =

(

∂L
∂(∂µφr)

δφr + L δxµ
)

/ǫ (3.45)

1Note that the transformations we are considering now have nothing to do with the transformations

considered before to obtain the equation of motions. The latter vanish on the boundary.
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Inserting now the total variation of the fields, Eq. (3.43), we obtain

jµ =

[

∂L
∂(∂µφr)

(

∆φr − (∂νφ) δxν
)

+ L δxµ
]

/ǫ

=

[

∂L
∂(∂µφr)

∆φr −
(

∂L
∂(∂µφr)

∂νφ−Lδµν
)

δxν
]

/ǫ

=

[

∂L
∂(∂µφr)

∆φr −
(

∂L
∂(∂µφr)

∂νφ−L gµν
)

δxν

]

/ǫ

(3.46)

Let us define

Tµν =
∂L

∂(∂µφ)
∂νφ− gµνL. (3.47)

we can rewrite Nöther’s current as

jµ =

(

∂L
∂(∂µφr)

∆φr − Tµνδxν

)

/ǫ (3.48)

Let us now see two important examples of symmetries and their associated Nöther’s

current. We start with invariance under translations (in time and space). In this case, the

transformations are
{

xµ → x′µ = xµ +ǫn̂µ ,

φr(x)→ φ′r(x′) = φr(x)⇒ ∆φr(x) = 0.
(3.49)

Using these results to build the conserved current we obtain

jµ = −Tµνn̂ν . (3.50)

Since the unit vector n̂ is arbitrary, we see that the conservation of Nöther’s current cor-

responds to

∂µTµν = 0. (3.51)

The tensor Tµν is called the energy-momentum tensor. The continuity equations are four

(one for each index ν) and correspond in fact to conservation of energy and conservation

of momentum in each spatial direction. The conserved quantities are

Pν(t) =
∫

d3x T0ν(x). (3.52)

Let us check some components of the energy-momentum tensor (see Fig. 3.3)

T00 =
∂L
∂φ̇
φ̇−L = H. (3.53)

This corresponds to the Hamiltonian density, i.e., the energy density. The associated cur-

rent Ti0 is the “energy current density” and generalizes the concept of the Poynting vector
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T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

energy density

energy 

current density

momentum density

momentum 

current density

pressure

stress tensor

shear stress

Figure 3.3: Components of the energy-momentum tensor. Note that in the literature often the tensor is

defined with inverted µ and ν indices, therefore also the interpretation of the individual elements changes

accordingly.

of the electromagnetic field. The continuity equation with ν = 0 corresponds then to the

conservation of energy P0 = H. For ν = 1, 2, 3 we obtain the conservation laws for the

three components of the momentum. The components T0i correspond to the “momentum

density” and the components T ji represent “momentum current density.” More appro-

priately they form the so-called “stress tensor.”

The energy-momentum tensor as defined above is usually called the “canonical” energy-

momentum tensor and is in general not symmetric. However, we can always build a

symmetrized version of the tensor, called the Belinfante energy-momentum tensor.2 The

point is that if we add a term ∂λ f λµν with f λµν = − fµλν, then this implies no change in

the conservation laws, i.e., if we choose

T′µν = Tµν + ∂λ f λµν (3.54)

it is still true that

∂µT′µν = ∂µTµν = 0 (3.55)

Invariance under rotations, instead, not surprisingly leads to conservation of angu-

lar momentum, although the definition of what we mean with angular momentum for a

field is nontrivial. The transformation we are dealing with are Lorentz transformations.

In this case, we have to distinguish the type of field we are considering. We define scalar

fields those that do not change under Lorentz transformations. Fermion fields transform

according to what we studied for the solutions of the Dirac equation. Vector fields trans-

form as vectors.

For a scalar field, Lorentz transformations imply [see Eq. (2.164)]
{

xµ → x
′µ = xµ +ǫαβM(αβ)µνxν ,

φr(x)→ φ′r(x′) = φr(x).
(3.56)

2This is useful, e.g., in the context of General Relativity, where Einstein’s equations are written in terms

of a symmetric energy-momentum tensor
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Nöther’s current, Eq. (3.48), takes the form (δφ = 0)

jµ(αβ) ≡Mµαβ = −TµνM
(αβ)
νσ xσ = −Tµαxβ + Tµβxα , (3.57)

where we used the explicit form of the Lorentz generators in Eq. (2.169). The ensuing

conserved quantities form the following tensor

Jαβ =
∫

d3xM0αβ. (3.58)

This tensor is antisymmetric, therefore we cannot have the same indices α and β. If we

have two spatial indices (invariance under rotations), e.g., 1 and 2, the conserved quantity

corresponds to the component 3 of the vector product of the position x and the momen-

tum density T0i, i.e., to angular momentum in the 3 direction. If we choose a time and

spatial index (invariance under boosts), the conserved quantity turns out to be the posi-

tion of the center-of-mass.

For a fermion field, Lorentz transformations induce a change also on the fields, ac-

cording to Eq. (2.178)

{

xµ → x
′µ = xµ +ǫαβM(αβ)µνxν ,

φr(x)→ φ′r(x′) = φr(x)− i
2ǫαβσ

αβφr(x).
(3.59)

The corresponding angular momentum tensor becomes

Mµαβ ≡ ∂L
∂(∂µφ)

(

− i

2
σαβ

)

φ− Tµαxβ + Tµβxα . (3.60)

For spatial α and β, the total angular momentum is composed now by two parts: one

related to the “internal” change of the fields upon rotations (absent in scalar fields) and

one related to the rotation of coordinates in the physical space. This second term is identi-

fied with orbital angular momentum, the first is identified with spin. In fact, the operator

σ i j is related to the spin operator in the direction k, cf. Eqs. (2.189) and (2.191). Angular

momentum and spin are not conserved separately: only total angular momentum is.

3.1.5 Global gauge invariance and charge conservation

Let us consider a particularly simple example of symmetry: suppose we are dealing with

a complex field and the Lagrangian is invariant under a global phase transformation of

the fields, i.e.,
{

φ(x)→ φ′(x) = eiαφ(x) ≈ φ+ iαφ

φ∗(x)→ φ∗′(x) = e−iαφ∗(x) ≈ φ∗ − iαφ∗
(3.61)

It is clearly an internal symmetry, with no change of the coordinates. The Lagrangian can

be anything built with combinations of φ∗φ. If the Lagrangian is chosen to be real, the

invariance under the above symmetry is guaranteed.
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Let us then check what we find for the conserved current. For an infinitesimal trans-

formation (α → 0, where α represents then the infinitesimal parameter of our transfor-

mation) we have

∆φ = δφ ∼ iαφ, ∆φ∗ = δφ∗ ∼ −iαφ∗. (3.62)

The conserved current is obtained from Eq. (3.40). The field and its complex conjugate

have to be treated as independent fields, i.e., if they were two fields with different index r

jµ =
∂L

∂(∂µφ)

δφ

α
+

∂L
∂(∂µφ∗)

δφ∗

α
= i

(

∂L
∂(∂µφ)

φ− ∂L
∂(∂µφ∗)

φ∗
)

. (3.63)

We can identify a conserved quantity

Q =
∫

d3x j0 = i
∫

d3x

(

∂L
∂(∂0φ)

φ− ∂L
∂(∂0φ

∗)
φ∗
)

. (3.64)

We note that for real fields, the conserved current would be identically zero. On the other

hand, for complex fields (and whenever the Lagrangian is invariant under the above

transformation) we can always define the above conserved quantity. We call it “charge,”

but is does not necessarily mean electric charge. It could be for instance hypercharge,

baryonic number, leptonic number, flavor... Real fields, on the other hand, are not ap-

propriate to describe fields with conservation of some global charge. For instance, the

electromagnetic field is real and there is no global charge associated to it.

The phase transformation we have taken into consideration here is an example of

Abelian transformation. Two phase transformations of this kind always commute (since

in this case, the phase is just a number). There can be examples also of non-Abelian

global gauge transformations. Consider for instance a field which is composed of two

components φ = (φu,φd). We could also introduce the concept of a rotation in this two-

dimensional space, which is formally similar to the rotations of Pauli spinors. Rotations

of this kind are in fact usually called isospin rotations: the rotation would be described

by a 2× 2 unitary matrix V, with det(V) = +1 if we want them to describe continuous

rotations connected to the identity. Therefore, an isospin rotation can be written as3

φ′ = e−iθ~σ ·~n/2φ, ⇒ δφ = −iθ
~σ ·~n

2
φ. (3.65)

If our Lagrangian is invariant under this kind of transformation (for instance, if it is just

the sum of two identical Lagrangians, one for φu and one for φd), the corresponding

Nöther’s current is the isospin current (there are three of them, since the axis of rotation

is arbitrary)

jµi = −i
∂L

∂(∂µφ)

σ i

2
φ. (3.66)

3Often the Pauli matricesσ i are denoted as τ i when they are used to describe isospin rotations, but they

are the same.
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3.1.6 A classical example: the electromagnetic field

We will treat the quantized EM field later in the chapter, but let us consider for the mo-

ment this important example in the classical case. A good treatment of this topic can be

found in the book by V. Barone [6].

We expect to recover Maxwell’s equations. In the razionalized Gaussian units they

can be written (in vacuum and with c = 1) as

~∇ · ~E = ρ, (Max I)

~∇ · ~B = 0, (Max II)

~∇× ~E = −∂t~B, (Max III)

~∇× ~B = ~j + ∂t~E, (Max IV)

(3.67)

The first and last equations (Gauss’s theorem and Ampére–Maxwell law) are usually re-

ferred to as inhomogeneous Maxwell’s equations, since they contain terms related to the

electric currents and charges. The second and third (Gauss’s theorem for the magnetic

field and Faraday–Neumann–Lenz’s equation) are the homogeneous ones.

We have to first of all determine the Lagrangian density of the field. It turns out to be

L = −1

4
FµνFµν − jµAµ (3.68)

The last term is there only in the presence of a current. Remember that jµ = (ρ, ~j). The

EM tensor is defined as

Fµν = ∂µAν − ∂νAµ (3.69)

and is antisymmetric.4 The Aµ are our fields: they are the four components of a vector

field. Remember that Aµ = (Φ, ~A).

We remember that the connection of the EM tensor and of the four-potential to the

electric and magnetic fields is

Ei = Fi0 = ∂i A0 − ∂0 Ai = −∇i A0 − ∂t Ai (3.70)

εi jrBr = F ji = ∂ j Ai − ∂i A j = −∇ j Ai +∇i A j. (3.71)

corresponding to

Fµν =











0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0











. (3.72)

4Note that there are two alternative definitions of the EM tensor: Mandl–Shaw uses a different sign.
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The validity of the homogeneous Maxwell’s equations are already guaranteed by the

above definitions. In fact, multiplying Eq. (3.71) by εi jk and using the property εi jkε
i jr =

2δr
k we obtain

εi jkεi jrBr = 2Bk = 2εi jk∂ j Ai = 2εi jk∇i A j = 2
(

~∇× ~A
)k

(3.73)

In conclusion, Eqs. (3.70) and (3.71) become

~E = −~∇Φ− ∂t ~A, (3.74)

~B = ~∇× ~A, (3.75)

From the previous equations, we can check that

~∇ · ~B = 0 (Max II)

~∇× ~E = −∂t~B (Max III)

which correspond to the homogeneous Maxwell’s equations.

The shortest way to write these two equations is

εµνρσ∂ρFµν = 0. (3.76)

They are automatically satisfied by the fact that F is antisymmetric. We can introduce the

so-called dual field tensor ∗Fµν = −εµνρσFρσ and further simplify the above equation

∂µ
∗Fµν = 0. (3.77)

The first two of Maxwell’s equations can be obtained as Euler-Lagrange equations

derived from our Lagrangian. Expanding the Lagrangian we find

L = −1

4

(

∂µAν − ∂νAµ
)(

∂µAν − ∂νAµ
)

− jµAµ

= −1

4

(

(∂µAν)∂
µAν − (∂µAν)∂

νAµ − (∂νAµ)∂
µAν + (∂νAµ)∂

νAµ
)

− jµAµ

= −1

2

(

(∂νAµ)∂
νAµ − (∂µAν)∂νAµ

)

− jµAµ

(3.78)

To obtain the Euler–Lagrange equations we need

∂L
∂Aµ

= − jµ , (3.79)

∂L
∂(∂νAµ)

= −
(

∂νAµ − ∂µAν
)

= −Fνµ . (3.80)

Note that in the last equation superficially there seems to be a factor 1/2 missing. This is

not an error. Suppose you have an expression aρaρ and you take the derivative with re-

spect to aµ. We need to do the calculation explicitly component by component to convince
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ourselves

∂

∂a0
(aρaρ) =

∂

∂a0
(a0a0 − aiai) = 2a0, (3.81)

∂

∂ai
(aρaρ) = − ∂

∂ai
(a0a0 − aiai) = 2ai. (3.82)

The four-dimensional way to write this is

∂

∂aµ
(aρaρ) =

∂

∂aµ

(

gρσ aρaσ
)

= gρσ
(

δµρ aσ + aρδ
µ
σ

)

= 2aµ (3.83)

The same kind of procedure can be applied to the calculation of

∂L
∂(∂νAµ)

= −1

2
gαρgβσ

[

δναδ
µ
β ∂ρAσ + (∂αAβ)δ

ν
ρδ
µ
σ − δνρδµσ ∂βAα − (∂ρAσ)δ

ν
βδ
µ
α

]

= −
(

∂νAµ − ∂µAν
)

= −Fνµ .

(3.84)

In conclusion, the Euler–Lagrange equations for the electromagnetic field (including

an electromagnetic current jµ) are

∂νFνµ = jµ . (3.85)

This is the shortest possible way to write down Maxwell’s equations (actually, only the

first two). It is a collection of four different equations, one for each index µ.

To obtain the first two of Maxwell’s equations, let us consider separately the cases

µ = 0, i in Eq. (3.85)

j0 = ∂νFν0 = −∂iFi0 = ∇iFi0 (3.86)

ji = ∂νFνi = ∂tF
0i +∇ jF ji (3.87)

which lead to

~∇ · ~E = ρ, (Max I)

~∇× ~B = ~j + ∂t~E. (Max IV)

We can also compute the Lagrangian and the Hamiltonian in terms of the E and B

fields (let us consider jµ = 0)

L = −1

4
FµνFµν = −1

4

(

− F0iF0i − F0iF0i + Fi jFi j
)

=
1

2

(

~E2 − ~B2
)

(3.88)

To compute the Hamiltonian, we can compute also the energy-momentum tensor.

However, we need to use a trick, i.e., the fact that we can add a term of the type ∂ρ f ρµν

with f ρµν = − fµρν. In this case, we choose

T′µν = Tµν − ∂ρ(FρµAν)

= Fρµ∂νAρ +✘✘✘✘✘✘
∂ρ(Fρµ)Aν − Fρµ∂ρAν − gµνL

= −Fρµ(∂ρAν − ∂νAρ)− gµνL = FρµFνρ − gµνL
(3.89)
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(the added term is correctly antisymmetric in the ρµ indices). Now we can compute the

Hamiltonian density

T′00 = Fρ0F0
ρ −L = −Fi0F0i −L = F0iF0i −L

= ~E2 − 1

2

(

~E2 − ~B2
)

=
1

2

(

~E2 + ~B2
)

(3.90)

This is the correct form of the energy density of the electromagnetic field (radiation field).

We can also compute the EM field momentum density

T′0i = Fρ0Fi
ρ = −F j0Fi j = E jǫi jrBr = (~E× ~B)i, (3.91)

which is the expression of the Poynting vector.

In the above discussion we avoided talking about a crucial property of the electromag-

netic field, i.e., gauge invariance. In covariant notation, gauge invariance means that we

can transform our fields (i.e., the four-potential) in this way

Aµ(x) −→ Aµ′(x) = Aµ(x) + ∂µ f (x) (3.92)

without affecting the physics. The Lagrangian in the absence of currents is unaffected

by this gauge transformation. When currents are present, the Lagrangian changes upon

gauge transformations. However, if the current is conserved, ∂µ jµ = 0, the Lagrangian

changes by a four-divergence, which insures that the equations of motions are not changed.

We will discuss gauge invariance more extensively when we will quantize the electro-

magnetic field.

3.2 Field quantization

3.2.1 The harmonic oscillator

It is useful to quickly review some concepts related to the quantized harmonic oscillator,

as it will provide the basic ideas for field quantization.

The Lagrangian is

L =
mẋ2

2
− mω2

2
x2. (3.93)

In this case, the generalized coordinate is the standard coordinate x. The conjugate mo-

mentum is

p =
∂L

∂ẋ
= mẋ (3.94)

The Hamiltonian can be written as

H = pẋ− L =
p2

2m
+

mω2

2
x2. (3.95)
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Quantum mechanics can be obtained by promoting the generalized coordinates and

momenta to operators and imposing the so-called “canonical commutation relations”

[

x, p
]

= ih̄. (3.96)

To do a relativistic theory, it is more natural to use Heisenberg picture, where the opera-

tors depend also on time. It should be clear that in Heisenberg picture the commutation

relation are equal-time commutation relations.

Generally speaking, the canonical quantization procedure for standard quantum me-

chanics can be described by these two steps: i) promote any function of the generalized

coordinates to operators, ii) replace Poisson’s brackets with commutation rules

{

f , g
}

PB
−→ − i

h̄

[

f , g
]

. (3.97)

Poisson’s brackets are defined as

{

f , g
}

PB
= ∑

i

(

∂ f

∂qi

∂g

∂pi
− ∂ f

∂pi

∂g

∂qi

)

(3.98)

where the sum runs over all generalized coordinates and momenta. Therefore, for a sys-

tem with several generalized coordinate we obtain

[

qi, p j

]

= ih̄δi j,
[

qi, q j

]

= 0,
[

pi, p j

]

= 0. (3.99)

The analysis of the harmonic oscillator can be done also using ladder operators (cre-

ation and annihilation operators). They can be introduced as

a =
1√

2mh̄ω
(mωx + ip), a† =

1√
2mh̄ω

(mωx− ip). (3.100)

We can check that
[

a, a†
]

= − i

h̄

[

x, p
]

= 1. (3.101)

The Hamiltonian can be written as

H =
h̄ω

2

(

a†a + aa†
)

= h̄ω

(

a†a +
1

2

)

(3.102)

where we also see the occurrence of the number operator

N = a†a (3.103)

We can use as a Hilbert space for our harmonic oscillator the eigenvectors of the num-

ber operator (the so-called Fock space). We denote them by
∣

∣n
〉

. The following properties
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hold

N
∣

∣n
〉

= n
∣

∣n
〉

with n = 0, 1, 2, . . . , (3.104)

Na†
∣

∣n
〉

= (n + 1)a†
∣

∣n
〉

, Na
∣

∣n
〉

= (n− 1)a
∣

∣n
〉

, (3.105)
∣

∣n + 1
〉

=
1√

n + 1
a†
∣

∣n
〉

,
∣

∣n− 1
〉

=
1√
n

a
∣

∣n
〉

, (3.106)

∣

∣n
〉

=
1√
n!

(

a†
)n∣
∣0
〉

. (3.107)

The vacuum state is the one for which

a
∣

∣0
〉

= 0,
〈

0
∣

∣0
〉

= 1. (3.108)

The eigenvectors of N are also eigenvectors of the Hamiltonian with energy

En = h̄ω

(

n +
1

2

)

. (3.109)

The ladder operators in Heisenberg picture follow the equation of motion

ih̄
da(t)

dt
=
[

a(t), H
]

. (3.110)

with the solution

a(t) = ae−iωt. (3.111)

If we have a superposition of independent oscillators, each at discrete positions de-

noted by the indices i, j, with different wavevectors k, k′, the commutation relations will

be valid for each oscillator independently

[

xi, p j

]

= ih̄δi j, or
[

ak, a†k′
]

= δkk′ . (3.112)

All other commutators vanish

[

ak, ak′
]

=
[

a†k , a†k′
]

= 0. (3.113)

There can be also extra indices to denote the oscillation modes (polarizations) r, s.

[

xri, ps j

]

= ih̄δrsδi j. or
[

ark, a†sk′
]

= δrsδkk′ . (3.114)

The Hamiltonian in this case can be written as

H = ∑
r

∑
k

h̄ωk

(

a†rkark +
1

2

)

(3.115)

We can introduce the occupation number operators for each oscillation modes (de-

fined by wavevector and polarization)

Nrk = a†rkark (3.116)
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we can define its eigenvectors

∣

∣n
〉

=
1√
nrk!

(

a†rk

)nrk
∣

∣0
〉

. (3.117)

We may find it uncomfortable to have a zero-point energy. In the case of a single

oscillator it was h̄ω/2. For n discrete oscillators it becomes nh̄ω/2. In the continuum case

it becomes infinite. It does not really matter, because what matters are energy differences

between one state an another. In this case, we can simply shift, or define, as zero the

energy of the vacuum, the
∣

∣0
〉

state. This corresponds to simply dropping the +1/2 in the

Hamiltonian.

The way to formally handle this problem is to introduce the concept of normal order-

ing. Normal ordering consists in writing all the annihilation operators to the right. For

instance

N[aa†] = a†a, N[a†a] = a†a. (3.118)

For classical mechanics, the ordering of the operators is irrelevant. The Lagrangian we

started from did not have any specific ordering rule. But since we are working with

non-commuting operators, the order of the operators matter and we have to specify a

prescription about that: we can decide to start from a normal-ordered Lagrangian.

Instead of defining normal ordering as “putting all annihilation operators to the right,”

we can use a more general definition for any operator Ô

N[Ô] = Ô−
〈

0
∣

∣Ô
∣

∣0
〉

, (3.119)

i.e., the operator minus its vacuum expectation value. The latter is not an operator any-

more, but a scalar function. We can include it into the definition of our Lagrangian with-

out causing any difference in the physics. Note that

〈

0
∣

∣aa†
∣

∣0
〉

=
〈

0
∣

∣aa†
∣

∣0
〉

−
〈

0
∣

∣a†a
∣

∣0
〉

=
〈

0
∣

∣[a, a†]
∣

∣0
〉

= [a, a†]
〈

0
∣

∣0
〉

= [a, a†] (3.120)

therefore

N[aa†] = aa† −
〈

0
∣

∣aa†
∣

∣0
〉

= aa† − [a, a†] = a†a, (3.121)

which shows the consistency of the two definitions of normal ordering given above.

The wavefunction of the harmonic oscillator in the n = 1 state can be defined in this

way

Ψ(x) =
〈

x
∣

∣1
〉

=
〈

x
∣

∣a†
∣

∣0
〉

. (3.122)

and the wave function of two oscillators in the n = 1 state is

Ψ(x1, x2) =
〈

x1, x2

∣

∣a†1a†2
∣

∣0
〉

. (3.123)

Since the a operators commute, the function is symmetric.
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3.2.2 The fermionic oscillator

The above discussion is appropriate for oscillators with integer spin (bosonic oscillators).

The occupation number can have any integer value, which means that there can be a

superposition of any number of quanta in each oscillation mode. This cannot be the case

for a semi-integer spin oscillator (fermionic), where the occupation number can only be 1

or 0.

It turns out, somewhat surprisingly, that the treatment of a fermionic oscillator can be

carried out simply by changing the commutation rules into anticommutation rules, i.e.,

{

f , g
}

PB
−→ − i

h̄

{

f , g
}

. (3.124)

At the level of creation and annihilation operators, this leads to

{

ark, a†sk′
}

= δrsδkk′ fermions. (3.125)

All other anticommutators vanish

{

ark, ask′
}

=
{

a†rk, a†sk′
}

= 0. (3.126)

Also in this case we can introduce a number operator in the same way as for the

bosonic oscillator. The difference is that the eigenvalues of that operator can now be only

1 and 0. We have in fact

a2 =
(

a†
)2

= 0 (3.127)

N2 = a†aa†a = a†
(

1− a†a
)

a = N ⇒ N(N − 1) = 0 (3.128)

For each oscillation mode, we have only two possible states
∣

∣0
〉

and
∣

∣1r

〉

= a†r
∣

∣0
〉

.

Note that if we have a state formed by two oscillations

∣

∣1rk1sk′
〉

= a†rka†sk′
∣

∣0
〉

= −a†sk′a
†
rk

∣

∣0
〉

= −
∣

∣1sk′1rk

〉

. (3.129)

That is, we recover the property that fermion states must be antisymmetric. If r = s and

k = k′ we see that the state must be zero, i.e., there cannot be two oscillations with the

same momentum and polarization.

The wavefunction of the fermionic oscillator in the n = 1 state can be defined in this

way

Ψ(x) =
〈

x
∣

∣1
〉

=
〈

x
∣

∣a†
∣

∣0
〉

. (3.130)

and the wave function of two oscillators in the n = 1 state is

Ψ(x1, x2) =
〈

x1, x2

∣

∣a†1a†2
∣

∣0
〉

. (3.131)

Since the a operators anticommute, the function is antisymmetric.
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3.2.3 Procedure to quantize fields

To build a theory of quantized fields, we closely follow what was done in the discrete

case. To go from discrete mechanics to field mechanics, we replace the generalized coor-

dinates with time-and-space-dependent fields. Then

• we promote the fields to operators;

• for bosons, we replace Poisson brackets with commutators multiplied by (−i/h̄);

• for fermions, we replace Poisson brackets with anticommutators multiplied by

(−i/h̄).

Note that for a Poisson bracket involving fields we typically need this kind of relation

(see also Eq. (3.4))

{

φr(x), πs(x′)
}

PB
= ∑

i

∫

d3z

(

∂φr(x)

∂φi(z)

∂πs(x′)
∂πi(z)

− ∂πs(x′)
∂φi(z)

∂φr(x)

∂πi(z)

)∣

∣

∣

∣

x0=x′0=z0

= ∑
i

∫

d3z δriδsiδ
3(~x−~z)δ3(~x′ −~z) = δrsδ

3(~x−~x′).
(3.132)

In practice, apart from some exceptions, the above procedure can also be translated

into the following

• for bosons, we assume the validity of the following equal-time commutation rela-

tions 5

[

φr(x), πs(x′)
]

= ih̄ δrsδ(~x−~x′)
[

φ,φ
]

=
[

π , π
]

= 0 for t = t′, (3.133)

• for fermions, we assume the validity of the following equal-time anticommutation

relations

{

φr(x), πs(x′)
}

= ih̄ δrsδ(~x−~x′)
{

φ,φ
}

=
{

π , π
}

= 0 for t = t′. (3.134)

This procedure is called in different ways: “field quantization,” “canonical field quan-

tization,” or “second quantization.” This last name is a bit deceiving. There is only one

quantization, but it is applied to field operators. The first steps into the ideas of field

quantization (for a vibrating string) appeared in the so-called Dreimännerarbeit of Born,

Heisenberg and Jordan in 1926 [11]. The formalism of field quantization for bosonic fields

was devoloped by Dirac [15] and by Jordan and Klein in 1927 [22]. The first discussion

of quantization of fermionic fields was done by Jordan and Wigner in 1928 [23]. Jordan

5At different times the commutation relations are different.
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should be rated as one of the most important pioneer of Quantum Field Theory (in spite

of his political views in favor of Nazism).

The necessity of using anticommutation or commutation rules is assumed at this point

as a postulate. However, it turns out that it is dictated by the so-called spin-statistics the-

orem, first formulated by Pauli in 1940. In essence, the theorems says that if we want a

theory that is Lorentz invariant, has positive energies and positive norms, and respects

causality, we need to quantize bosons with commutation rules and fermions with anti-

commutation rules. We will see some aspects of this requirements in the following.

In terms of ladder operators, the quantization procedure consists in imposing the com-

mutation or anticommutation relations
[

ar(~k), a†s(~k
′)
]

= (2π)32ωkδrsδ(~k−~k′)
[

a, a
]

=
[

a†, a†
]

= 0 for bosons, (3.135)
{

ar(~k), a†s(~k
′)
}

= (2π)32ωkδrsδ(~k−~k′)
{

a, a
}

=
{

a†, a†
}

= 0 for fermions. (3.136)

Pay attention because there are different possible conventions concerning the above

commutation relations, corresponding to different definitions of the ladder operators.

Mandl–Shaw and the notes of Miglietta are written with discrete values of k because they

rely on the box quantization and take the continuum limit in the end. The commutation

relations are written then without the prefactor (2π)32ωk and replacing the Dirac delta

with a Krönecker delta δkk′ . Peskin–Schroeder use a slightly different normalization (the

correspondence is a(k)|P-S = a/
√

2ωk)

The reason to introduce the prefactor (2π)32ωk can be explained in this way. We can

use an integration over d3k and show that

∫

d3k δ(~k−~k′) = 1 (3.137)

but the integration measure is not invariant. On the other hand, we can use an integra-

tion measure which is manifestly Lorentz invariant (at least for orthochronous transfor-

mations)6

∫

d4k

(2π)4
2π δ(k2 −m2)θ(k0)

=
∫

d4k

(2π)3
δ(k2 −m2)θ(k0) =

∫

d4k

(2π)3
δ
[

(k0)2 −ω2
k

]

θ(k0)

=
∫

d4k

(2π)3

1

2k0

[

δ(k0 +ωk) + δ(k
0 −ωk)

]

θ(k0) =
∫

d3k

(2π)3

dk0

2k0
δ(k0 −ωk)

=
∫

d3k

(2π)32ωk
.

(3.138)

It is the choice of this integration measure that makes one prefer to use the above defini-

tion of commutation rules.

6The following property of the Dirac δ is necessary: δ
(

f (x)
)

= ∑x0
δ(x− x0)/| f ′(x0)|, where x0 are the

points for which f (x0) = 0.
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We should also mention that it is possible to find different forms of quantization:

the standard one, where the commutation relations are written at equal times, is called

“instant-form” quantization, but it is possible also to use “light-front” and “point-form”

quantization [18]. The difference is that the commutation relations are written for

x0 = constant instant form, (3.139)

x0 + x3 = constant light-front form, (3.140)

xµxµ = constant point-form. (3.141)

The explicit form of the commutation relations is different in the three cases.

3.3 The real Klein–Gordon field

3.3.1 Lagrangian density and equations of motion

The Lagrangian density for this field is

LKG =
1

2

(

∂µφ∂µφ−m2φ2
)

. (3.142)

Note that since the dimensions of the Lagrangian density in n.u. are [M]4, the dimen-

sion of the fieldφ must be [M].

To derive the equation of motion we need

∂L
∂φ

= −m2φ,
∂L

∂(∂µφ)
= ∂µφ. (3.143)

Just to avoid confusions, let’s check the last result

1

2

∂

∂(∂µφ)

(

∂ρφ∂ρφ
)

=
1

2

∂

∂(∂µφ)

(

∂ρφ gρσ∂σφ
)

=
1

2

(

δµρ gρσ∂σφ+ ∂ρφ gρσ δµσ

)

= ∂µφ

(3.144)

The equation of motion turns out to be precisely the Klein–Gordon equation

(

∂µ∂µ + m2
)

φ = 0. (3.145)

Some remarks about the Lagrangian density [30]

1. The Lagrangian density does not depend explicitly on x, therefore it is invariant

under translations and leads to conservation of energy and momentum;

2. The Lagrangian density is a Lorentz scalar, therefore it is invariant under Lorentz

transformations and leads to conservation of angular momentum and center-of-

mass position;
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3. The Lagrangian density depends on φ and ∂µφ. No higher derivatives can be in-

cluded if we want to end up with a second-order differential equation for the equa-

tion of motion.

4. The Lagrangian density is not uniquely determined, since we can always add a

four-divergence ∂νFν without changing the action and the equations of motion.

As we already remarked when studying the invariance of the Klein–Gordon equation,

the fields do not have to change under Lorentz transformations. They are called “scalar”

fields. They have no spin: there is no need to introduce spinors, there is no internal degree

of freedom that has to undergo some change due to Lorentz transformations.

In the case of the real Klein–Gordon field, there is no conserved global charge. There-

fore, the real Klein–Gordon field can be appropriate for the description of scalar (spin

zero) chargeless fields. This is the case of, e.g., the Higgs boson.

The conjugate fields are

π(x) =
∂L
∂φ̇

= φ̇(x). (3.146)

The energy-momentum tensor can be written as

Tµν = ∂µφ∂νφ− gµνL. (3.147)

In this case, it is symmetric.

The Hamiltonian density can be written as

H = T00 = φ̇2 −L =
1

2

(

φ̇2 + (~∇φ)2 + m2φ2
)

. (3.148)

The momentum density can be written as

P i = T0i = φ̇∂iφ ⇒ ~P = −φ̇~∇φ. (3.149)

3.3.2 Solutions for the Klein–Gordon field

The general solution will have a form like

φ(x) ∼ φ(~k)e−ikx (3.150)

with k0 = ωk =
√

|~k|2 + m2. However, we would like now to study all possible k and

we would like to work with reasonably normalized waves. A way to look for the right

normalization is to work in a box with boundary conditions and then let the box dimen-

sions go to infinity. We are not going to repeat the details of the derivation, but the final

outcome is that the functions have to be normalized by a factor 1/
√

2Vω. The continuum

limit is obtained at the end using the relation

1

V

∞

∑
~k=−∞

−→ 1

(2π)3

∫

∞

−∞
d3k. (3.151)
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We will work here with continuous values of k from the start. An important mathe-

matical relation to remember is

1

(2π)3

∫

d3y ei~y·~r = δ(~r). (3.152)

The solutions of the Klein–Gordon equation can be written in the form7

φ(x) = φ+(x) +φ−(x) =
∫

d3k

(2π)32ωk

(

a(~k)e−ikx + a†(~k)eikx
)

. (3.153)

with k0 = ωk =
√

m2 +~k2.

We can easily check that the above function represents a general solution of the Klein–

Gordon equation. Moreover, the presence of a† ensures that the solution is Hermitian

(φ = φ†). Note that we are talking about Hermitian instead of simply real and we used

the † instead of the simple conjugation because we are now working with field operators.

We can find the expression for the conjugate fields

π(x) = φ̇(x) =
∫

d3k

(2π)32ωk
(−iωk)

(

a(~k)e−ikx − a†(~k)eikx
)∣

∣

∣

k0=ωk

, (3.154)

We now perform our field quantization and impose the equal-time commutation rela-

tions of Eq. (3.133) (in the following, it is understood that k0 = ωk and k0′ = ωk′)

[

φ(x), π(x′)
]

∣

∣

∣

x0=x0′
=
∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′
(−iωk′)

×
(

[

a(~k), a(~k′)
]

e−ikxe−ik′x′ −
[

a(~k), a†(~k′)
]

e−ikxeik′x′

+
[

a†(~k), a(~k′)
]

eikxe−ik′x′ −
[

a†(~k), a†(~k′)
]

eikxeik′x′
)∣

∣

∣

x0=x0′
.

(3.155)

Not surprisingly, it turns out that we have to assume the validity of the commutation

rules for the creation and annihilation operators, Eq. (3.135). Then

[

φ(x), π(x′)
]

∣

∣

∣

x0=x0′
=
∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′
(−iωk′)(2π)

3

×
(

− 2ωkδ(~k−~k′) e−ikxeik′x′ − 2ωkδ(~k−~k′) eikxe−ik′x′
)∣

∣

∣

x0=x0′

=
∫

d3k

(2π)3

i

2

(

e−ik(x−x′) + eik(x−x′)
)∣

∣

∣

x0=x0′

=
∫

d3k

(2π)3

i

2

(

ei~k·(~x−~x′) + e−i~k·(~x−~x′)
)

= i
∫

d3k

(2π)3
ei~k·(~x−~x′) = iδ(~x−~x′).

(3.156)

7This is a general statement from the theory of Partial Differential Equations.
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In the second-last step, we made use of the fact that we can change the integration variable

of the second term from~k to −~k without any effect.

If neede, one can invert Eq. (3.153) to obtain the creation and annihilation operators

a(~k) =
∫

d3x eikxi
←→
∂ tφ(x), (3.157)

a†(~k) =
∫

d3x φ(x)i
←→
∂ te

−ikx, (3.158)

where we used the notation

A(x)
←→
∂ B(x) = A(x)

(

∂B(x)
)

−
(

∂A(x)
)

B(x). (3.159)

3.3.3 Hamiltonian and momentum of the Klein–Gordon field

We can compute the Hamiltonian starting from the definition Hamiltonian density in

Eq. (3.148)

H =
∫

d3x H =
∫

d3x
1

2

(

φ̇2 + (~∇φ)2 + m2φ2
)

. (3.160)

We have

φ̇(x) = π(x) =
∫

d3k

(2π)32ωk
(−iωk)

(

a(~k)e−ikx − a†(~k)eikx
)∣

∣

∣

k0=ωk

, (3.161)

~∇φ(x) =
∫

d3k

(2π)32ωk
(i~k)

(

a(~k)e−ikx − a†(~k)eikx
)∣

∣

∣

k0=ωk

. (3.162)

At this point, we can rely on the fact that the Hamiltonian is a constant, therefore we

can conveniently compute it for t = 0. We can check (see, e.g., Eq. 3.26 of Srednicki) that

indeed the full calculation with t 6= 0 gives the same result.

(

φ(x)
)2∣
∣

t=0
=
∫

d3k d3k′

(2π)6 2ωk 2ωk′

(

a(~k)ei~k·~x + a†(~k)e−i~k·~x
)(

a(~k′)ei~k′·~x + a†(~k′)e−i~k′·~x
)

=
∫

d3k d3k′

(2π)6 2ωk 2ωk′

(

a(~k)a(~k′)ei(~k+~k′)·~x + a†(~k)a†(~k′)e−i(~k+~k′)·~x

+ a(~k)a†(~k′)ei(~k−~k′)·~x + a†(~k)a(~k′)e−i(~k−~k′)·~x
)

.

(3.163)

We now perform the d3x integration needed to obtain the Hamiltonian. We make use of
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the usual property (3.152) to obtain δ(~k±~k′)
∫

d3x
(

mφ(x)
)2∣
∣

t=0
=
∫

d3k d3k′

(2π)3 2ωk 2ωk′
m2
[(

a(~k)a(~k′) + a†(~k)a†(~k′)
)

δ(~k +~k′)

+
(

a(~k)a†(~k′) + a†(~k)a(~k′)
)

δ(~k−~k′)
]

=
∫

d3k

(2π)3 4ω2
k

m2
(

a(~k)a(−~k) + a†(~k)a†(−~k)

+ a(~k)a†(~k) + a†(~k)a(~k)
)

.

(3.164)

The other two terms in the Hamiltonian can be calculated in a similar manner. The only

difference is the change of sign of the mixed terms and the presence of the extra factors

−iωk and i~k:

∫

d3x
(

φ̇(x)
)2∣
∣

t=0
=
∫

d3k d3k′

(2π)3 2ωk 2ωk′
(−ωkωk′)

[(

a(~k)a(~k′) + a†(~k)a†(~k′)
)

δ(~k +~k′)

−
(

a(~k)a†(~k′) + a†(~k)a(~k′)
)

δ(~k−~k′)
]

=
∫

d3k

(2π)3 4ω2
k

(−ω2
k)
(

a(~k)a(−~k) + a†(~k)a†(−~k)

− a(~k)a†(~k)− a†(~k)a(~k)
)

.

(3.165)
∫

d3x
(

~∇φ(x)
)2∣
∣

t=0
=
∫

d3k d3k′

(2π)3 2ωk 2ωk′
(−~k ·~k′)

[(

a(~k)a(~k′) + a†(~k)a†(~k′)
)

δ(~k +~k′)

−
(

a(~k)a†(~k′) + a†(~k)a(~k′)
)

δ(~k−~k′)
]

=
∫

d3k

(2π)3 4ω2
k

~k2
(

a(~k)a(−~k) + a†(~k)a†(−~k)

+ a(~k)a†(~k) + a†(~k)a(~k)
)

.

(3.166)

In the last step, note that −~k ·~k′ =~k2 if~k = −~k′, and −~k ·~k′ = −~k2 if~k =~k′.
Putting things together and remembering thatω2

k =~k2 + m2 we obtain

H =
1

2

∫

d3k

(2π)32ωk
ωk

(

a(~k)a†(~k) + a†(~k)a(~k)
)

. (3.167)

Up to now, we did not make use of the quantization conditions. The above result for

the Hamiltonian could have been derived also in the context of a classical field theory

(apart from the fact that we treated a as operators and used the †). But now we make use

of the commutation relations and replace

a(~k)a†(~k) = a†(~k)a(~k) + (2π)32ωkδ(0) (3.168)
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we then obtain

H =
∫

d3k

(2π)32ωk
ωk

(

a†(~k)a(~k)
)

+
1

2

∫

d3kωkδ(0). (3.169)

Note that the Hamiltonian (i.e., the energy of the field) is positive definite. Its eigenvalues

must always be positive. Note also that if we would have adopted anticommutation rules

for the a and a† operators, we would have obtained only the last term. This is a part of

the spin-statistics theorem, which tells you that in order to have a sensible result for the

energy, for bosons we need to impose commutation relations on the operators. We shall

see how the situation changes for fermions.

The last term of the Hamiltonian corresponds to the zero-point energy of a (infinite)

system of harmonic oscillators and gives a divergent result, but at this point we can in-

troduce the concept of normal ordering, as we did for the quantum harmonic oscillator.

Note that, in the case of normal ordering of field operators, we have to take into con-

sideration thatφ+ components contain annihilation operators and have to go to the right.

We then have (see Eq. 3.18 of Mandl–Shaw)

N
[

φ(x)φ(y)
]

= N
[(

φ+(x) +φ−(x)
)(

φ+(y) +φ−(y)
)]

= N
[

φ+(x)φ+(y) +φ+(x)φ−(y) +φ−(x)φ+(y) +φ−(x)φ−(y)
]

= φ+(x)φ+(y) +φ−(y)φ+(x) +φ−(x)φ+(y) +φ−(x)φ−(y)

= φ(x)φ(y)−
[

φ+(x),φ−(y)
]

.

(3.170)

Alternatively, we can use the definition of normal ordering in Eq. (3.119) and check that

〈

0
∣

∣φ(x)φ(y)
∣

∣0
〉

=
〈

0
∣

∣φ+(x)φ−(y)
∣

∣0
〉

=
〈

0
∣

∣φ+(x)φ−(y)
∣

∣0
〉

−
〈

0
∣

∣φ−(y)φ+(x)
∣

∣0
〉

=
[

φ+(x),φ−(y)
]

,
(3.171)

leading to

N
[

φ(x)φ(y)
]

= φ(x)φ(y)−
〈

0
∣

∣φ(x)φ(y)
∣

∣0
〉

= φ(x)φ(y)−
[

φ+(x),φ−(y)
]

, (3.172)

which is consistent with our previous calculation.

The analysis with the normal-ordered Lagrangian would be equal to the one we have

done, except that the Hamiltonian would be now

H =
1

2

∫

d3k

(2π)32ωk
ωkN

[

a(~k)a†(~k) + a†(~k)a(~k)
]

=
∫

d3k

(2π)32ωk
ωk

(

a†(~k)a(~k)
)

.

(3.173)

In other words, the effect of introducing normal ordering gives the same results as before,

without any zero-point energy (the action of the Hamiltonian on the vacuum would give
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0). In the following, we will always assume that we should be starting with normal-

ordered Lagrangians.8

In similar ways we can also compute the momentum associated to the field, starting

from Eq. 3.149. Steps analogous to the Hamiltonian lead to

~P =
∫

d3k

(2π)32ωk

~k
(

a†(~k)a(~k)
)

. (3.174)

We can check in different ways the fact that the operators a† and a correspond to

creation and annihilation operators. There is no fundamental difference compared to

the single-particle harmonic oscillator. We can identify a “oscillation number” density

operator N ∝ a†(~k)a(~k). We can check that it commutes with the Hamiltonian. We can

express the state of the system in terms of eigenstates of the number operator (Fock space).

The vacuum state is the one for which

a(~k)
∣

∣0
〉

= 0,
〈

0
∣

∣0
〉

= 1. (3.175)

A state with a single oscillation/particle with momentum k is given by
∣

∣1k

〉

= a†(~k)
∣

∣0
〉

. (3.176)

The normalization of the one-particle state is

〈1k|1k′〉 =
〈

0
∣

∣a(~k)a†(~k′)
∣

∣0
〉

=✭✭✭✭✭✭✭✭✭〈

0
∣

∣a†(~k)a(~k′)
∣

∣0
〉

+
〈

0
∣

∣[a(~k), a†(~k′)]
∣

∣0
〉

= (2π)32ωkδ(~k−~k′)
(3.177)

Fock states can be built by acting with creation operators on the vacuum, while coor-

dinate space states are built acting on the vacuum with the full field operator
∣

∣x
〉

= φ(x)
∣

∣0
〉

. (3.178)

The wavefunction of a generic state is defined as

Ψ(x) =
〈

x
∣

∣Ψ
〉

. (3.179)

For instance, the wavefunction corresponding to one oscillation of momentum p can be

written as

Ψ(x) =
〈

0
∣

∣φ†(x)
∣

∣1p

〉

=
∫

d3k

(2π)32ωk

(

〈

0
∣

∣a(~k)
∣

∣1p

〉

e−ikx +✘✘✘✘✘✘✘〈

0
∣

∣a†(~k)
∣

∣1p

〉

eikx
)

=
∫

d3k

(2π)32ωk

〈

0
∣

∣a(~k)a†(~p)
∣

∣0
〉

e−ikx

=
∫

d3k

(2π)32ωk
(2π)32ωkδ(~k−~p)e−ikx = e−ipx

(3.180)

8There may be peculiar situations where the zero-point energy plays a role: if the fields are constrained

inside a finite region of space, e.g., a box, the zero-point energy inside the box is different from the zero-

point energy outside the box. This is because the oscillations inside the box must have well-defined wave-

lengths, while outside the box all wavelengths are admissible. The difference in zero-point energies can

cause a pressure on the box. This is the so-called Casimir effect.
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We can prove that

[

H, a†(~k)
]

= ωk a†(~k),
[

H, a(~k)
]

= −ωk a(~k), (3.181)

H a†(~k)
∣

∣nk

〉

= (n + 1)ωk a†(~k)
∣

∣nk

〉

, H a(~k)
∣

∣nk

〉

= (n− 1)ωk a(~k)
∣

∣nk

〉

, (3.182)

~P a†(~k)
∣

∣nk

〉

= (n + 1)~k a†(~k)
∣

∣nk

〉

, ~P a(~k)
∣

∣nk

〉

= (n− 1)~k a(~k)
∣

∣nk

〉

. (3.183)

3.3.4 Causality

It is instructive to explore also the expression of the commutator between two fields at

different times (dropping the vanishing commutators from the beginning):

[

φ(x),φ(x′)
]

=
∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′

×
(

[

a(~k), a†(~k′)
]

e−ikxeik′x′ +
[

a†(~k), a(~k′)
]

eikxe−ik′x′
)

=
∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′

×
(

(2π)32ωkδ(~k−~k′) e−ikxeik′x′ − (2π)32ωkδ(~k−~k′) eikxe−ik′x′
)

=
∫

d3k

(2π)32ωk

(

e−ik(x−x′) − eik(x−x′)
)

(3.184)

We can make some important observations concerning this expression. It depends

only on the difference x − x′, which is consistent with translational invariance. It is

Lorentz invariant because the integration measure is Lorentz invariant and the rest is

a function of four-dimensional scalar products. If we consider t = t′, the commutator

gives 0, as it should

[

φ(x),φ(x′)
]∣

∣

t=t′ =
∫

d3k

(2π)32ωk

(

e−ik(x−x′) − eik(x−x′)
)∣

∣

∣

x0=x0′

=
∫

d3k

(2π)32ωk

(

ei~k·(~x−~x′) − e−i~k·(~x−~x′)
)

= 0

(3.185)

where we used again the possibility of changing sign to~k in the second term due to the

fact that we are integrating over d3k.

This means that the commutator vanishes for any space-like separation (x− x′)2 < 0,

due to the fact that we can always perform a boost to a frame where t − t′ = 0 and

calculate the commutator there (obtainining 0). In other words, fields at two points with

space-like separation commute. Only if the separation is time-like (i.e., inside the light

cone), the fields do not commute.

We could not have obtained this result choosing anticommutation rules instead of

commutation rules, because no negative sign would have appeared from the second term

in Eq. (3.184)
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This result is intimately connected with causality. If causality has to be preserved, a

measurement at x should not influence a measurent at x′ outside the light-cone, i.e., if

(x − x′)2 < 0. This means that any two operators representing observable quantities

must commute outside the light-cone.

Suppose we wanted to measure the energy density of the field at two different space-

time points: the Hamiltonian operators at x and x′ must commute. To keep the discussion

simple, let us consider only the term m2φ2 in the Hamiltonian. For (x − x′)2 < 0 we

require
[

φ(x)φ(x),φ(x′)φ(x′)
]

= φ(x)φ(x)φ(x′)φ(x′)−φ(x′)φ(x′)φ(x)φ(x)

= φ(x)φ(x)φ(x′)φ(x′)−φ(x)φ(x)φ(x′)φ(x′) = 0
(3.186)

The condition is fulfilled if φ(x) and φ(x′) commute, which is what we demonstrated

above.

The full calculation of the commutator gives the so-called Pauli–Jordan causal func-

tion, that we quote without derivation

[

φ(x),φ(x′)
]

= iD(x− x′) (3.187)

where

D(x) = −i
∫

d3k

(2π)32ωk

(

e−ikx − eikx
)

= −i
∫

d4k

(2π)3

(

θ(x0)−θ(−x0)
)

e−ikx

=
1

2π

(

θ(x0)−θ(−x0)
)[

δ(x2)− m

2
√

x2
J1

(

m
√

x2
)

]

,

(3.188)

and where J1 is the first-order Bessel function of the first kind. Note that for a massless

particle the commutator is nonzero only on the light cone. For a massive particle it is

nonzero also inside the light cone.

3.4 The complex Klein–Gordon field

This “type” of field is very similar to the real one. The only difference is that the field

operators do not have to be Hermitian. We need to considerφ andφ† as two independent

fields.

3.4.1 Lagrangian density and equations of motion

The Lagrangian density for this field is

LKG∗ = N
[

∂µφ
†∂µφ−m2φ†φ

]

. (3.189)
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For the equations of motions we need

∂L
∂φ

= −m2φ†,
∂L
∂φ†

= −m2φ, (3.190)

∂L
∂(∂µφ)

= ∂µφ†,
∂L

∂(∂µφ†)
= ∂µφ. (3.191)

They lead to

(

∂µ∂µ + m2
)

φ = 0,
(

∂µ∂µ + m2
)

φ† = 0. (3.192)

The conjugate fields are

π(x) =
∂L
∂φ̇

= φ̇†(x), π†(x) =
∂L
∂φ̇†

= φ̇(x). (3.193)

The energy-momentum tensor can be written as (normal ordering is understood)

Tµν = ∂µφ† ∂νφ+ ∂νφ† ∂µφ− gµνL. (3.194)

In this case, it is symmetric.

The Hamiltonian density can be written as

H = T00 = φ̇†φ̇+ φ̇† φ̇−L = φ̇† φ̇+ ~∇φ† · ~∇φ+ m2φ†φ. (3.195)

The momentum density can be written as

P i = T0i = φ̇∂iφ† + φ̇†∂iφ ⇒ ~P = −φ̇~∇φ† − φ̇†~∇φ. (3.196)

3.4.2 Solutions for the complex Klein–Gordon field

The general solutions can be written as

φ(x) = φ+(x) +φ−(x) =
∫

d3k

(2π)32ωk

(

a(~k)e−ikx + b†(~k)eikx
)

, (3.197)

φ†(x) = φ†+(x) +φ†−(x) =
∫

d3k

(2π)32ωk

(

b(~k)e−ikx + a†(~k)eikx
)

. (3.198)

with k0 = ωk =
√

m2 +~k2.

The expression of the conjugate fields

π(x) = φ̇† =
∫

d3k

(2π)32ωk
(−iωk)

(

b(~k)e−ikx − a†(~k)eikx
)∣

∣

∣

k0=ωk

, (3.199)

π†(x) = φ̇ =
∫

d3k

(2π)32ωk
(−iωk)

(

a(~k)e−ikx − b†(~k)eikx
)∣

∣

∣

k0=ωk

. (3.200)
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There are two canonical commutation relations (all others are zero)

[

φ(x), π(x′)
]∣

∣

t=t′ = i δ(~x−~x′),
[

φ†(x), π†(x′)
]∣

∣

t=t′ = i δ(~x−~x′). (3.201)

They correspond to two commutation relations (all others are zero)

[

a(~k), a†(~k′)
]

= (2π)32ωkδ(~k−~k′),
[

b(~k), b†(~k′)
]

= (2π)32ωkδ(~k−~k′). (3.202)

Therefore, there are two types of creation and annihilation operators, the a and b ones.

There are two number operators and a generic state can have a certain number of exci-

tations of type a and b, obtained from the vacuum state by the application of creation

operators.

3.4.3 Hamiltonian, momentum, and charge of the complex Klein–Gordon

field

The Hamiltonian can be obtained in a way similar to the real case. Let us look in detail at

one of the terms

φ†(x)φ(x)
∣

∣

t=0
=
∫

d3k d3k′

(2π)6 2ωk 2ωk′

(

b(~k′)ei~k′·~x + a†(~k′)e−i~k′·~x
)(

a(~k)ei~k·~x + b†(~k)e−i~k·~x
)

=
∫

d3k d3k′

(2π)6 2ωk 2ωk′

(

b(~k)a(~k′)ei(~k+~k′)·~x + a†(~k)b†(~k′)e−i(~k+~k′)·~x

+ a†(~k)a(~k′)ei(~k−~k′)·~x + b(~k)b†(~k′)e−i(~k−~k′)·~x
)

.

(3.203)

We now perform the d3x integration needed to obtain the Hamiltonian:

∫

d3x m2φ†(x)φ(x)
∣

∣

t=0
=
∫

d3k d3k′

(2π)3 2ωk 2ωk′
m2
[(

b(~k)a(~k′) + a†(~k)b†(~k′)
)

δ(~k +~k′)

+
(

b(~k)b†(~k′) + a†(~k)a(~k′)
)

δ(~k−~k′)
]

=
∫

d3k

(2π)3 4ω2
k

m2
(

b(~k)a(−~k) + a†(~k)b†(−~k)

+ b(~k)b†(~k) + a†(~k)a(~k)
)

.

(3.204)

As in the real case, we can compute also the other terms of the Hamiltonian. Without

repeating all the steps, the outcome of the calculation gives in the end, after imposing

normal ordering

H =
∫

d3k

(2π)32ωk
ωk

(

a†(~k)a(~k) + b†(~k)b(~k)
)

. (3.205)
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The Hamiltonian is positive-definite, but receives two different contributions. To have a

better understanding of what these two oscillation modes represent, let’s look at Nöther’s

current associated to the global gauge transformation discussed in Sec. 3.1.5. The La-

grangian density we started from is indeed invariant under this kind of transformation.

Therefore, we can identify a conserved charge as defined in Eq. (3.64) (remember that

there is an arbitrariness in the normalization):

Q = iq
∫

d3x

(

∂L
∂φ̇†

φ† − ∂L
∂φ̇
φ

)

= iq
∫

d3x
(

π†φ† − πφ
)

. (3.206)

As for the Hamiltonian, we can compute the “charge” at t = 0. Using the explicit de-

compositions of the fields and their conjugate, the calculation runs in a way similar to the

Hamiltonian. We obtain

Q = q
∫

d3k

(2π)32ωk

(

a†(~k)a(~k)− b†(~k)b(~k)
)

. (3.207)

where we already applied normal ordering. We observe that the two types of oscillations

give opposite contributions to the total charge. They can be interpreted, therefore, as

particles (a operators) and antiparticles (b operators). The complex Klein–Gordon field

can be used to describe fields/particles with spin 0 and with a charge of some type, for

instance π+ and π−.

Note that the “probability density” we discussed in the context of the single-particle

Klein–Gordon equation was exactly the same as the present charge density for the fields.

It was impossible to interpret it as a probability density due to the negative contributions.

In the context of field theories, it is straightforward to interpret it as a charge density, not

as a probability density.

3.5 The Dirac field

This topic is treated in, e.g., Ch. 4 of Mandl–Shaw, Sec. 4.3 of Ryder, Sec. 7.2 of Aitchison–

Hey, Sec. 3.5 of Peskin–Schroeder.

3.5.1 Lagrangian density and equations of motion

The starting point is the following Lagrangian density. As done before, we include normal

ordering, although it becomes relevant only upon quantization.

LDir = N
[

ψ
(

i/∂−m
)

ψ
]

. (3.208)

Note that since the dimensions of the Lagrangian density in n.u. are [M]4, the dimension

of the field ψ must be [M]3/2.
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To obtain the equations of motion we need

∂L
∂ψ

= −mψ,
∂L
∂ψ

= (i/∂−m)ψ, (3.209)

∂L
∂(∂µψ)

= ψ iγµ ,
∂L

∂(∂µψ)
= 0. (3.210)

They lead to the Dirac equations (remember that ψ
←−
/∂ = ∂µψγ

µ)

ψ
(

i
←−
/∂ + m

)

= 0,
(

i/∂−m
)

ψ = 0. (3.211)

The conjugate fields are

π(x) =
∂L
∂ψ̇

= iψ†(x), π(x) =
∂L
∂ψ̇

= 0. (3.212)

It is interesting to note that the field conjugate to ψ vanishes. However, note also that

the field conjugate to ψ is proportional to ψ. This is an indication that ψ and ψ are not

dynamically independent fields and we should worry only about one of them.

It is possible to do the analysis in a symmetric way, just starting from a different ver-

sion of the Lagrangian density (normal-ordering is understood)

L = ψ
( i

2

←→
/∂ −m

)

ψ ≡ ψ
( i

2

−→
/∂ − i

2

←−
/∂ −m

)

ψ = ψ
( i

2
/∂−m

)

ψ−ψ
( i

2

←−
/∂
)

ψ

= ψ
( i

2
/∂−m

)

ψ− i

2
∂µ(ψγ

µψ) +ψ
( i

2
/∂
)

ψ = ψ
(

i/∂−m
)

ψ− i

2
∂µ(ψγ

µψ).
(3.213)

The two versions of the Lagrangian differ only by a four divergence, with no physical

consequences. The different Lagrangians lead to different definitions of the conjugate

fields

π(x) =
i

2
ψ†(x), π(x) = − i

2
γ0ψ(x), (3.214)

and different forms of the Poisson brackets

{

ψ(x), π(x′)
}

PB
= 2δ3(~x−~x′) (3.215)

The factor 2 comes from the fact that there is a contribution to the Poisson bracket from

the term (∂ψ/∂π)(∂π/∂ψ), since the fields and their conjugates are not independent. The

anticommutation relations applied to the creation and annihilation operators turn out to

be unchanged. We shall not pursue this direction, we will use the first version of the

Lagrangian and consider only the anticommutation relations between ψ and π .

The energy-momentum tensor can be written as (normal ordering is understood)

Tµν = ψ iγµ∂νψ− gµνψ✘✘✘✘✘✘(

i/∂−m
)

ψ = ψ iγµ∂νψ. (3.216)
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The last step is due to the validity of the equations of motion. Note that the tensor is not

symmetric in this case.

The Hamiltonian density can be written as

H = T00 = ψ iγ0∂0ψ

= ψ†
(

− iγ0~γ · ~∇+ mγ0
)

ψ = ψ†HDψ
(3.217)

where in the second line we used the Dirac equation and we used the Dirac Hamiltonian

of Eq. (2.103).

The momentum density can be written as

P i = T0i = ψ† i ∂iψ. (3.218)

3.5.2 Solutions for the Dirac field

In the case of the Dirac field, the solutions can be written in general as (A is a Dirac index,

s is a polarization index)

ψA(x) = ψ+
A(x) +ψ−A(x) = ∑

s=1,2

∫

d3k

(2π)32ωk

(

cs(~k)usA(~k)e
−ikx + d†s(~k)vsA(~k)e

ikx
)

,

(3.219)

ψA(x) = ψ
+
A(x) +ψ

−
A(x) = ∑

s=1,2

∫

d3k

(2π)32ωk

(

ds(~k)v̄sA(~k)e
−ikx + c†s(~k)ūsA(~k)e

ikx
)

.

(3.220)

with k0 = ωk =
√

m2 +~k2 and the spinors u and v are the objects we studied in the

context of the single-particle Dirac equation. For sake of brevity, let us drop the arrow

on the three-vectors in the arguments of the spinors and the creation and annihilation

operators.

The conjugate field (as mentioned before, we consider only the field conjugate toψ) is

π(x) = iψ†(x) = i ∑
s=1,2

∫

d3k

(2π)32ωk

(

ds(k)v
†
sA(k)e

−ikx + c†s(k)u
†
sA(k)e

ikx
)

. (3.221)

Since they represent spin-half particles, i.e., fermions, we adopt the anticommutation
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relations. Let us calculate (see Ryder, Eq. 4.50)9

{

ψA(x), πB(x′)
}

∣

∣

∣

t=t′
=
{

ψA(x), iψ†B(x′)
}

∣

∣

∣

t=t′

= i ∑
r,s

∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′

×
(

urA(k)u
†
sB(k

′) {cr(k), c†s(k
′)} e−ikx+ik′x′

+ vrA(k)v
†
sB(k

′) {d†r (k), ds(k
′)} eikx−ik′x′

)∣

∣

∣

t=t′

= i ∑
r,s

∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′
(2π)32ωkδrsδ(~k−~k′)

×
(

urA(k)ūsC(k
′)γ0

CB e−ikx+ik′x′ + vrA(k)v̄sC(k
′)γ0

CB eikx−ik′x′
)∣

∣

∣

t=t′

= i
∫

d3k

(2π)32ωk

(

(/k + m)ACγ
0
CB ei~k·(~x−~x′) + (/k−m)ACγ

0
CB e−i~k·(~x−~x′)

)

= i
∫

d3k

(2π)32ωk

(

(k0γ0 − kiγi + m)AC + (k0γ0 + kiγi −m)AC

)

γ0
CB ei~k·(~x−~x′)

= i
∫

d3k

(2π)3
1AB ei~k·(~x−~x′) = i 1AB δ(~x−~x′). (3.222)

In the third-to-last step, we changed the integration variable of the second term, from~k

to −~k. This is the reason of the change of sign of the kiγi term (as usual, it is understood

that k0 = ωk for the free field).

Note that up to this point there is no compelling reason to choose anticommutators

instead of commutators. We could have obtained similar results even with the choice of

commutation rules. However, it would have been necessary to switch d with d† in the

expansion of Eq. (3.219).

3.5.3 Hamiltonian, momentum, charge, and spin of the Dirac field

For the computation of the Hamiltonian we need

ψ̇A(x) = ∑
s=1,2

∫

d3k

(2π)32ωk
(−iωk)

(

cs(~k)usA(~k)e
−ikx − d†s(~k)vsA(~k)e

ikx
)

. (3.223)

We can compute the Hamiltonian and momentum of the Dirac field (we do it at t = 0,

9In the first step, we avoid writing out the anticommutators that are already known to vanish.
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we drop Dirac indices)

H =
∫

d3x iψ†(x)ψ̇(x)

= ∑
s,s′

∫

d3x
∫

d3k d3k′

(2π)6 2ωk 2ωk′
ωk

(

ds(~k)v
†
s(~k)e

−ikx + c†s(~k)u
†
s(~k)e

ikx
)

×
(

cs′(~k
′)us′(~k

′)e−ik′x − d†s′(
~k′)vs′(~k

′)eik′x
)

= ∑
s,s′

∫

d3k d3k′

(2π)3 2ωk 2ωk′
ωk

{(

ds(~k)cs′(~k
′)v†s(~k)us′(~k

′)− c†s(~k)d
†
s′(
~k′)u†s(~k)vs′(~k

′)
)

δ(~k +~k′)

+
(

c†s(~k)cs′(~k
′)u†s(~k)us′(~k

′)− ds(~k)d
†
s′(
~k′)v†s(~k)vs′(~k

′)
)

δ(~k−~k′)
}

= ∑
s,s′

∫

d3k

(2π)3 2ωk

1

2

(

ds(~k)cs′(−~k)✘✘✘✘✘✘✘
v†s(~k)us′(−~k)− c†s(~k)d

†
s′(−~k)✘✘✘✘✘✘✘

u†s(~k)vs′(−~k)

+ c†s(~k)cs′(~k)u
†
s(~k)us′(~k)− ds(~k)d

†
s′(
~k)v†s(~k)vs′(~k)

)

= ∑
s,s′

∫

d3k

(2π)3 2ωk

1

2

(

c†s(~k)cs′(~k)2ωkδss′ − ds(~k)d
†
s′(
~k)2ωkδss′

)

= ∑
s

∫

d3k

(2π)3 2ωk
ωk

(

c†s(~k)cs(~k)− ds(~k)d
†
s(~k)

)

. (3.224)

The result for the Dirac field can be compared with that of the complex Klein–Gordon

field, where we had the combination a†(~k)a(~k) + b(~k)b†(~k). At this point, we make use of

anticommutation rules on the ladder operators

ds(~k)d
†
s(~k) = −d†s(~k)ds(~k) + (2π)32ωkδ(0). (3.225)

As before, we can either replace the operators as above and subtract an (infinite) constant

energy, or we can specify from the beginning that we are considering operators in normal

ordering. For fermionic fields, however, normal ordering is defined with an extra minus

sign due to the anticommutation rules, i.e.,

N[dd†] = −d†d (3.226)

This is consistent with the definition of normal ordering given in Eq. (3.119) since
〈

0
∣

∣dd†
∣

∣0
〉

=
〈

0
∣

∣dd†
∣

∣0
〉

+
〈

0
∣

∣d†d
∣

∣0
〉

=
〈

0
∣

∣{d, d†}
∣

∣0
〉

= {d, d†}
〈

0
∣

∣0
〉

= {d, d†} (3.227)

therefore

N[dd†] = dd† −
〈

0
∣

∣dd†
∣

∣0
〉

= dd† − {d, d†} = −d†d. (3.228)

The difference compared to the bosonic field is essential. In fact, the Hamiltonian with

normal ordering turns out to be

H =
∫

d3x N[iψ†(x)ψ̇(x)] = ∑
s

∫

d3k

(2π)3 2ωk
ωk

(

c†s(~k)cs(~k) + d†s(~k)ds(~k)
)

. (3.229)
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We can appreciate once again that the Hamiltonian is positive-definite. Note that if we

decided to use commutation rules instead of anticommutation rules, this would have led

us to a Hamiltonian not bound from below. This is another example of the validity of the

spin-statistics theorem.

As for the bosonic fields, we can check what is the effect of normal-ordering on two

fermionic fields (writing the Dirac indices explicitly)

N
[

ψA(x)ψB(y)
]

= N
[

ψ+
A(x)ψ+

B (y) +ψ+
A(x)ψ−B (y) +ψ−A(x)ψ+

B (y) +ψ−A(x)ψ−B (y)
]

= ψ+
A(x)ψ+

B (y)−ψ−B (y)ψ+
A(x) +ψ−A(x)ψ+

B (y) +ψ−A(x)ψ−B (y)

= ψA(x)ψB(y)−
{

ψ+
A(x),ψ−B (y)

}

.

(3.230)

This is again consistent (minus sign included) with the definition in Eq. (3.119).

As before, we can study the behavior of the Lagrangian density under a global gauge

transformation. It is easy to see that it is indeed invariant under this kind of transfor-

mation. The calculation of the charge goes in much the same way as for the complex

Klein–Gordon field. The Nöther current is

jµ = −iq

(

∂L
∂(∂µψ)

ψ−
✚
✚
✚

✚✚∂L
∂(∂µψ)

ψ

)

= qψγµψ (3.231)

which is the well-known current density we introduced while studying the Dirac equa-

tion.

The resulting conserved charge is

Q = q ∑
s

∫

d3k

(2π)32ωk

(

c†s(~k)cs(~k)− d†s(~k)ds(~k)
)

. (3.232)

As before, we see that there are two contributions, from particles and antiparticles (each

one has two contributions from the different spin states). Note that, at variance with the

result obtained while studying the Dirac equation, the conserved charge is not positive

definite. This is due to the fact that we have now introduced anticommutation rules.

Finally, let us consider the projection of the spin operator along the direction of the

momentum, what we have called the helicity operator in Sec. 2.2.13. For the Dirac field

we have, using Eqs. (2.260) and (2.261),

h =
∫

d3xψ†h(~k)ψ =
∫

d3k

(2π)32ωk

(

c†1(~k)c1(~k)− c†2(~k)c2(~k) + d†1(~k)d1(~k)− d†2(~k)d2(~k)
)

.

(3.233)

from which we see that the particle and antiparticle components with spin label 1 give a

positive contribution to helicity, while the components with spin label 2 give a negative

contribution. This justifies the asymmetry between the treatment of u and v spinors in

Secs. 2.2.12 and 2.2.13.
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3.5.4 Causality

An interesting discussion of this topic is done in Peskin–Schroeder, Sec. 3.5, where they

start consider the possibility of postulating commutation rules instead of anticommuta-

tion rules for fermionic fields. With commutation rules, the Hamiltonian would receive

negative contributions from the d†d operators. To avoid the problem, we could argue

that these negative energy contributions are for some reason forbidden, inaccessible. In

this case, however, we would run into problems with causality, because negative energy

states play an essential role in restoring causality.

Here, we limit ourselves to check if causality is preserved when anticommutation

rules are imposed. As we observed for the Klein–Gordon field, a measurement at x should

not influence a measurent at x′ outside the light-cone, i.e., if (x − x′)2 < 0. This still

means that any two operators representing observable quantities must commute outside

the light-cone. For simplicity, let us consider the measurement of the energy density and

let us consider the term mψψ in the Hamiltonian. For (x− x′)2 < 0 we require

[

ψA(x)ψA(x),ψB(x′)ψB(x′)
]

= ψA(x)ψA(x)ψB(x′)ψB(x′)−ψB(x′)ψB(x′)ψA(x)ψA(x) = 0
(3.234)

Interestingly, this condition is fulfilled if all fields operators either commute or anticom-

mute (because the operator is composed of two such fields, so we have to switch the op-

erators twice). Obviously, in the fermionic case we are interested in the anticommutation

rules. Through steps similar to Eq. (3.222), we can check that

{

ψA(x),ψB(x′)
}

= ∑
r,s

∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′

×
(

urA(k)ūsB(k
′) {cr(k), c†s(k

′)} e−ikx+ik′x′

+ vrA(k)v̄sB(k
′) {d†r (k), ds(k

′)} eikx−ik′x′
)

=
∫

d3k

(2π)32ωk

(

(/k + m)AB e−ik(x−x′) − (−/k + m)AB eik(x−x′)
)

=
(

i/∂x + m
)

AB

∫

d3k

(2π)32ωk

(

e−ik(x−x′) − eik(x−x′)
)

.

(3.235)

Apart from the Dirac structure with the derivative at the beginning, the second part

corresponds to the commutator between two scalar fields analyzed in Eq. (3.184): the

same considerations applying there hold here and allow us to say that the anticommu-

tator vanishes outside the light-cone, thus preserving causality also in the fermion-field

case.
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3.6 The electromagnetic field

Historically, the quantization of the electromagnetic field and its effect on black-body

radiation was the phenomenon that marked the beginning of Quantum Mechanics. The

formalization of field quantization for the electromagnetic field came only in 1929, with

works by Heisenberg and Pauli. It was the first field to be quantized, even before the

quantization of the Dirac or Klein–Gordon fields. However, due to the complications

added by gauge invariance, we treat this case as the last one.

3.6.1 Lagrangian density and equations of motion

The electromagnetic field is massless and has spin-1. This kind of field has only two in-

dependent components, but is described by a four-vector Aµ. There are two alternatives,

depending on how we choose to fix the gauge conditions: we can eliminate two of the

components from the beginning, but we loose manifest covariance; or we can keep four

components, of which two should however have no effect on the physics.

We have already seen how it is possible to define the Lagrangian density that leads to

Maxwell’s equations, which was

L = −1

4
FµνFµν − jµAµ (3.236)

The fields Aµ must have dimension [M], in order for the Lagrangian density to have

dimensions [M]4..

The theory must be invariant under gauge transformations

Aµ(x) −→ Aµ′(x) = Aµ(x) + ∂µ f (x). (3.237)

The Lagrangian density is not invariant under this transformation, but the difference is

just a four-divergence

L −→ L′ = L− ∂µ
(

jµ f (x)
)

(3.238)

(if we assume that for an electric current the continuity equation holds, ∂µ jµ = 0).

Note that a Lagrangian with a mass term of the type m2 AµAµ would not be invariant

under gauge transformations: gauge symmetry requires our field to be massless.

Note that gauge invariance does not lead to any new conservation law, because it is

not an additional symmetry that the Lagrangian fulfills, but rather it is a constraint that

we have to impose on the Lagrangian from the beginning because we know that physical

results should not depend on the gauge. This extra constraint originates from the fact

that we prefer to work with the four-potential Aµ, but in reality we are introducing extra,

nonphysical degrees of freedom (often called auxiliary fields).

Our starting Lagrangian, however, is not ideal for field quantization. This is due to

the fact that the field conjugate to A0 vanishes

π0 =
∂L

∂(∂0 A0)
= −F00 = 0. (3.239)
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At this point, we make use of the freedom to choose the gauge. There are several

possibilities, but the most important ones are

~∇ · ~A = 0 Coulomb gauge, (3.240)

∂µAµ = 0 Lorenz gauge, (3.241)

nµAµ = 0 temporal, light-cone, or axial gauge. (3.242)

Note that the Lorenz condition above does not fix the gauge completely. Performing

a gauge transformation with a function f (x) for which

∂µ∂µ f (x) = 0, (3.243)

we still obtain a field that satisfies the Lorenz gauge condition. The Lorenz gauge con-

dition identifies a class of gauges. Effectively, the Lorenz gauge reduces the number of

independent components of Aµ from four to three. But we can use the extra gauge free-

dom to further reduce the number of independent components to two. Consider the

example of a free field with no charges and currents. If we further choose a function f (x)

for which

∂0 f (x) = −Φ (3.244)

the resulting A0 component of the field vanishes, while it must be that ~∇ · ~A = 0. There-

fore, we fall in the case of the Coulomb gauge.10

The Coulomb condition reduces the independent components of the fields to two

(which is the case of the physical electromagnetic field). The condition is only one, so

it would appear that there were still three independent components of the field. How-

ever it turns out that the equation of motions (Maxwell’s equations) allow to further fix

the scalar potential A0 = Φ. In case of the absence of charges, Φ can be fixed to 0. In case

of the presence of charges, Φ is anyway fixed by the distribution of charges.

The advantage of the Coulomb gauge is that the A0 field does not appear as a degree of

freedom, therefore we do not have to worry about the absence of a conjugate field and we

can do our quantization in a way similar to before (but with some important differences).

The Coulomb gauge is, however, non-covariant. For instance, A0 changes from frame

to frame, therefore it may be cumbersome to deal with Lorentz invariance. The Lorenz

gauge is appealing because it is explicitly Lorentz covariant, but it contains non-physical

degrees of freedom.

Quantization in Coulomb gauge is presented, e.g., in the first Ch. 1 of Mandl–Shaw, in

the first part of Sec. 4.4 of Ryder, Quantization in the Lorenz gauge is developed, e.g., in

Ch. 5 of Mandl–Shaw, in the second part of Sec. 4.4 of Ryder, in Sec 7.3.2 of Aitchison-Hey.

The lecture notes of prof. Miglietta present both approaches.

10To be precise, the Lorenz gauge with A0 = 0 is called the “radiation gauge” and corresponds to the

Coulomb gauge only in the absence of charges.
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3.6.2 Lorenz gauge

Instead of working with the original Lagrangian, we use

L = −1

4
FµνFµν − 1

2ξ
(∂µAµ)

2 − jµAµ . (3.245)

This Lagrangian is not gauge invariant anymore. It corresponds to the original Lagrangian

only in the Lorenz gauge. The additional term we included is called “gauge-fixing” term.

To obtain the equations of motion we need

∂L
∂Aµ

= − jµ , (3.246)

∂L
∂(∂νAµ)

= −∂νAµ + ∂µAν − 1

ξ
gµν∂ρAρ. (3.247)

The equation of motions are

∂ρ∂ρAµ − (1− 1/ξ)∂µ∂ρAρ = jµ . (3.248)

The above equations do not correspond to Maxwell’s equations. They do only with the

extra condition imposed by the Lorenz gauge. In other words, the new Lagrangian cor-

rectly describes the physics only in the Lorenz gauge.

In the following, let us choose ξ = 1 (this choice is called “Feynman gauge”) and

consider the field in the absence of external currents. We then assume as a starting point

the Lagrangian

L′ = N

[

− 1

4
FµνFµν − 1

2
(∂µAµ)

2

]

. (3.249)

The equations of motions, in the absence of currents, now are

∂ρ∂ρAµ = 0, (3.250)

i.e., they are completely analogous to a set of four Klein-Gordon equations without masses.

The conjugate fields are

πν =
∂L

∂(∂0 Aν)
= −F0ν − g0ν∂µAµ . (3.251)

For the π0 field, we have potentially a nonzero result. However, if we assume the

validity of the Lorenz gauge condition in a “strong sense,” i.e., at the level of the opera-

tors, we would obtain again a vanishing field. The solution is to consider the condition

in a “weak sense,” i.e., that the expectation value of the operator ∂µAµ vanishes on any

physical state
〈

Ψ
∣

∣∂µAµ
∣

∣Ψ
〉

= 0. (3.252)

We will see the consequence of this condition at the end of the chapter.



92 3. Free quantum fields

As usual, it is possible to start from a Lagrangian that differs by a four divergence. For

instance it is convenient to use

LEM = −1

2
(∂µAν) ∂µAν . (3.253)

The difference between the two Lagrangians is

LEM −L′ = −
1

2✭
✭✭✭✭✭✭✭

(∂µAν) ∂µAν +
1

2

(

✭✭✭✭✭✭✭
(∂µAν)∂

µAν − (∂µAν)∂νAµ
)

+
1

2
(∂µAµ)

2

=
1

2

(

− (∂µAν)∂νAµ + ∂µAµ∂νAν
)

=
1

2

(

− ∂µ
(

Aν∂νAµ
)

+ ∂µ
(

Aµ∂νAν
)

)

(3.254)

The equations of motions are unchanged. The conjugate fields, with the last version

of the Lagrangian, are simpler

πν =
∂L

∂(∂0 Aν)
= −∂0 Aν . (3.255)

3.6.3 Polarization vectors

As we know from classical electrodynamics, the electromagnetic fields need to be de-

scribed using polarization vectors. In Minkowski space there are in general four possible

polarization vectors.

To build explicitly the polarization vectors, we can start with introducing a time-like

vector nµ (for which n2 > 0) and set11

ǫ
µ
0 =

nµ√
n2

. (3.256)

Then we choose one of the other three polarization vectors along the component of k

orthogonal to ǫ0 and with modulus −1, i.e.,

ǫ
µ
3 =

1
√

n2(k · n)2 − n4k2

(

n2kµ − (k · n)nµ
)

. (3.257)

Finally, the other two polarization vectors are chosen to be orthogonal to both n and k and

with modulus −1.

We normally call λ = 0 timelike or scalar polarization, λ = 1, 2 transverse polariza-

tions, and λ = 3 longitudinal polarization.

11We could also start from a space-like vector, normalized to−1, with the due attention to changing signs

where required. Using a light-like vector requires a different strategy because it cannot be normalized to

±1.
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The polarization vectors fulfill the following properties:

ǫ
µ
λ(
~k)ǫ∗λ′µ(~k) = gλλ′ , (3.258)

∑
λ,λ′

gλλ′ ǫ
µ∗
λ (~k)ǫνλ′(

~k) = gµν . (3.259)

Remember that the indices λ and λ′ refer to the polarization states, not to Lorentz indices,

even though gλλ′ is formally equal to the Minkowski metric tensor. To make a clear dis-

tinction, in Mandl–Shaw the notation ζλδλλ′ is used, where ζ0 = −1 and ζi = 1 (therefore,

−ζλδλλ′ = gλλ′).

It is useful to write down the result of summing over the transverse polarization states

only

∑
λ=1,2

ǫ
µ∗
λ (~k)ǫνλ(~k) = −gµν +ǫµ∗0 (~k)ǫν0 (~k)−ǫµ∗3 (~k)ǫν3 (~k)

= −gµν +
1

(k · n)2 − n2k2

[

k · n
(

kµ nν + kν nµ
)

− n2 kµ kν − k2 nµ nν
]

.
(3.260)

If we impose from the beginning that k2 = 0 the situation considerably simplifies. The

sum of the transverse polarization states becomes

∑
λ=1,2

ǫ
µ∗
λ (~k)ǫνλ(~k) = −gµν +

1

k · n
(

kµ nν + kν nµ
)

− n2

(k · n)2
kµ kν . (3.261)

The sum of the two unphysical polarization vectors is in this case proportional to kµ

ǫ
µ
0 (
~k) +ǫµ3 (

~k) =

√
n2

k · n kµ . (3.262)

We have also

kµǫ
µ
0 (
~k) = −kµǫ

µ
3 (
~k) =

k · n√
n2

. (3.263)

In a frame where the momentum k is in the z direction, i.e., k = (|~k|, 0, 0, |~k|), the

polarization vectors can be written as

ǫ
µ
0 (
~k) = (1, 0, 0, 0), (3.264)

ǫ
µ
1 (
~k) = (0, 1, 0, 0), ǫ

µ
2 (
~k) = (0, 0, 1, 0), ǫ

µ
3 (
~k) = (0, 0, 0, 1). (3.265)

The transverse polarizations above correspond to the so-called linear transverse polariza-

tions. For the circular transverse polarizations, one can choose

ǫ
µ
+(
~k) = − 1√

2
(0, 1, i, 0), ǫ

µ
−(~k) =

1√
2
(0, 1,−i, 0). (3.266)

In all cases, kµǫ
µ
1 = kµǫ

µ
2 = kµǫ

µ
+ = kµǫ

µ
− = 0.
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3.6.4 Solutions for the electromagnetic field

The general solution has the following form

Aµ(x) = Aµ+(x) + Aµ−(x) =
3

∑
λ=0

∫

d3k

(2π)32ωk

(

ǫ
µ
λ(
~k)aλ(~k)e

−ikx +ǫµ∗λ (~k)a†λ(~k)e
ikx
)

,

(3.267)

with k0 = ωk = |~k|. The only differences with respect to a real Klein–Gordon field are the

fact that the mass is zero and the presence of the polarization vectors ǫ. They appear be-

cause now the field is a vector field, with four Lorentz components and with, in principle,

four different polarizations.

In order to check in detail the form of the commutation relations, we need to compute

Poisson brackets

{

Aµ(x), πν(x′)
}

PB
=
∫

d3z

(

∂Aµ(x)

∂Aρ(z)

∂πν(x′)
∂πρ(z)

− ∂πν(x′)
∂Aρ(z)

∂Aµ(x)

∂πρ(z)

)

=
∫

d3z δµρ gνσδρσδ(~x−~z)δ(~x′ −~z) = gµνδ(~x−~x′).
(3.268)

We want now to check the usual canonical commutation relations (we are dealing with a

spin-1 field): 12

[

Aµ(x), πν(x′)
]

∣

∣

∣

x0=x0′
= ∑
λ,λ′

∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′
(−iωk′)

×
(

−ǫµλ(~k)ǫν∗λ′ (~k′)
[

aλ(~k), a†
λ′(

~k′)
]

e−ikxeik′x′

+ǫµ∗λ (~k)ǫνλ′(
~k′)
[

a†λ(~k), aλ′(~k′)
]

eikxe−ik′x′
)∣

∣

∣

x0=x0′
.

(3.269)

In order to obtain the canonical commutation relations, we have to impose

[

aλ(~k), a†
λ′(

~k′)
]

= −gλλ′(2π)
32ωkδ(~k−~k′). (3.270)

Note that this relation has a peculiarity: the commutation relations for transverse and

longitudinal polarizations are the usual ones, but the time-like polarization has an extra

minus sign. We shall investigate later some of the consequences of this choice.

The final result for the commutation relations is

[

Aµ(x), πν(x′)
]

∣

∣

∣

x0=x0′
=
∫

d3k

(2π)3

i

2

(

e−ik(x−x′) + eik(x−x′)
)

∑
λ,λ′

gλλ′ ǫ
µ∗
λ (~k)ǫνλ′(

~k)
∣

∣

∣

x0=x0′

= igµνδ(~x−~x′).
(3.271)

12We remove vanishing commutators from the beginning.
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We could have also started from the Lagrangian in the form of Eq. (3.249). In this case

the conjugate fields have additional terms with spatial derivatives and we should check

what happens to commutators of this type

[

Aµ(x), ∂i Aν
]

∣

∣

∣

x0=x0′
= ∑
λ,λ′

∫

d3k

(2π)32ωk

∫

d3k′

(2π)32ωk′
(ik′i)

×
(

ǫ
µ
λ(
~k)ǫν∗λ′ (~k

′)
[

aλ(~k), a†
λ′(

~k′)
]

e−ikxeik′x′

−ǫµ∗λ (~k)ǫνλ′(
~k′)
[

a†λ(~k), aλ′(~k′)
]

eikxe−ik′x′
)∣

∣

∣

x0=x0′
.

(3.272)

By inserting the commutation rules of Eq. (3.270) into the previous equation we obtain

that the contributions containing the spatial derivatives vanish,

[

Aµ(x), ∂i Aν
]

∣

∣

∣

x0=x0′
=
∫

d3k

(2π)32ωk

i

2

(

kiei~k·(~x−~x′) + kie−i~k·(~x−~x′)
)

∑
λ,λ′

gλλ′ ǫ
µ∗
λ (~k)ǫνλ′(

~k)

= gµν
∫

d3k

(2π)32ωk

iki

2 ✭✭✭✭✭✭✭✭✭✭✭✭(

ei~k·(~x−~x′) − ei~k·(~x−~x′)
)

= 0.

(3.273)

The fact that the contribution with spatial derivatives vanish is in agreement with the fact

that we can use both expressions for the Lagrangian.

3.6.5 Hamiltonian of the electromagnetic field

Using the Lagrangian in the form of Eq. (3.253), it is easy to compute the Hamiltonian as

H =
∫

d3x
(

πµ Ȧµ −L
)

=
∫

d3x
(

− Ȧµ Ȧµ +
1

2
Ȧµ Ȧµ − 1

2
~∇Aµ · ~∇Aµ .

)

= −
∫

d3x
1

2

(

Ȧ2 + (~∇A)2
)

.

(3.274)

Calculations similar to the Klein–Gordon field (cf. Sec. 3.3.3) lead to the following

result for the Hamiltonian (after the application of normal ordering)

H =
∫

d3k

(2π)32ωk
ωk ∑

λ

(−gλλ) a†λ(~k)aλ(~k)

=
∫

d3k

(2π)32ωk
ωk

(

− a†0(~k)a0(~k) +
3

∑
λ=1

a†λ(~k)aλ(~k)
)

.

(3.275)

Due to the presence of the contribution of the time-like polarizations, the Hamiltonian

may have negative expectation values. This is due to the negative sign in the commuta-

tion rules. Moreover, the norm of a state with a time-like photon (or any odd number of

time-like photons) is negative:

〈10 k|10 k〉 =
〈

0
∣

∣a0(~k)a†0(~k)
∣

∣0
〉

=✭✭✭✭✭✭✭✭✭〈

0
∣

∣a†0(~k)a0(~k)
∣

∣0
〉

+
〈

0
∣

∣[a0(~k), a†0(~k)]
∣

∣0
〉

= −(2π)32k0δ(0).

(3.276)
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To overcome these problems, we adopt the so-called Gupta–Bleuler procedure. We

know that scalar and longitudinal polarizations should not be physical and are somehow

artifacts of our choice of a “non-physical” gauge. We therefore make use of the Lorenz-

gauge condition (in its weak sense). The situation is similar to the case of the equations

of motion, where we needed to make use of the Lorenz condition to recover Maxwell’s

equations. Imposing the condition

∂µAµ
∣

∣Ψ
〉

= 0 (3.277)

is already too strong a requirement: not even the vacuum satisfies this condition. How-

ever, it is sufficient to assume

∂µAµ+
∣

∣Ψ
〉

= 0 (3.278)

to guarantee that
〈

Ψ
∣

∣∂µAµ
∣

∣Ψ
〉

=
〈

Ψ
∣

∣∂µAµ− + ∂µAµ+
∣

∣Ψ
〉

=
〈

Ψ
∣

∣∂µAµ−
∣

∣Ψ
〉

=
〈

Ψ
∣

∣∂µAµ+
∣

∣Ψ
〉∗

= 0. (3.279)

The condition (3.278) implies that

∑
λ

kµǫ
µ
λ(
~k)aλ(~k)

∣

∣Ψ
〉

= 0. (3.280)

The two transverse polarization states do not contribute since they are orthogonal to k.

The only nonzero contributions come from time-like and longitudinal photons and since

kµǫ
µ
0 = −kµǫ

µ
3 we obtain

[

a0(~k)− a3(~k)
]∣

∣Ψ
〉

= 0, i.e., a0(~k)
∣

∣Ψ
〉

= a3(~k)
∣

∣Ψ
〉

(3.281)

and its adjoint

〈

Ψ
∣

∣

[

a†0(~k)− a†3(~k)
]

= 0, i.e.,
〈

Ψ
∣

∣a†0(~k) =
〈

Ψ
∣

∣a†3(~k), (3.282)

An example of a physical state is
∣

∣Ψ
〉

=
(

− a†0(q) + a†3(q)
)∣

∣0
〉

(3.283)

Due to the conditions above, in any physical state the contribution from time-like

photons to any observable should cancel that of longitudinal photons, leaving only the

physical contributions.

Let us take for instance the case of the Hamiltonian. Due to the above conditions we

have
〈

Ψ
∣

∣a†0(~k)a0(~k)− a†3(~k)a3(~k)
∣

∣Ψ
〉

=
〈

Ψ
∣

∣a†0(~k)
[

a0(~k)− a3(~k)
]∣

∣Ψ
〉

= 0. (3.284)

In the end, the net result is that the expectation value of the Hamiltonian on a physical

state is
〈

Ψ
∣

∣H
∣

∣Ψ
〉

=
〈

Ψ
∣

∣

∫

d3k

(2π)32ωk
ωk

2

∑
λ=1

a†λ(~k)aλ(~k)
∣

∣Ψ
〉

, (3.285)

i.e., only the transverse polarizations give a contribution to the energy.



3.7 Conclusions 97

3.6.6 Coulomb gauge [optional]

The equations of motion (in the absence of currents) were

∂νFνµ = ∂ν∂νAµ − ∂µ∂νAν = 0 (3.286)

For µ = 0

✚
✚✚∂2

tΦ− ~∇2Φ− ∂t(✟✟✟∂tΦ− ~∇ · ~A) = −~∇2Φ− ∂t(−✟✟✟✟~∇ · ~A) = 0. (3.287)

This means that in Coulomb gauge the scalar potential has to fulfill Laplace’s equation. If

we choose the boundary condition Φ(t, ∞) = 0 the solution is trivially Φ(x) = 0. Due to

the gauge condition, the time component of our field Aµ is not a dynamical field anymore.

When charges are present, Φ may be different from zero, but it is entirely given by the

distribution of charges and is not a dynamical field. It can be defined as an “auxiliary

field.” Auxiliary fields are used to deal with systems with constraints. In this case, our

system is constrained by the Coulomb gauge condition.

We can stop considering the A0 field and continue the discussion with the Ai fields

only. The classical solutions for the potential are

~A(x) = ~A+(x) + ~A−(x) =
2

∑
λ=1

∫

d3k

(2π)32ωk

(

~ǫλ(~k)aλ(~k)e
−ikx +~ǫ∗λ(~k)a†λ(~k)e

ikx
)

, (3.288)

with k0 = ωk = |~k|.
In this case, we have only two possible polarization states. This is due to the fact that

the choice of gauge imposes

~k ·~ǫλ = 0. (3.289)

The conjugate fields are

π i = −F0i = Ei. (3.290)

We can proceed now with canonical quantization and impose the commutation rules

on the a and a† operators in the usual form. It turns out however that the commutation

rules for the fields and their conjugate are nontrivial (see, e.g., Ryder)

[

Ai(x), π j(x′)
]

∣

∣

∣

x0=x0′
=
∫

d3k

(2π)3

(

δi j − kik j

|~k|2

)

ei~k·~x. (3.291)

3.7 Conclusions

In this chapter, we have dealt with field theories and how to quantize them. To do this,

we promoted the fields to operators and imposed commutation or anticommutation rules

to the fields and their conjugate, or to the corresponding creation and annihilation opera-

tors. We have seen that scalar and vector fields (in general, bosonic fields) must be quan-

tized using commutation relations and Dirac fields (in general, fermionic fields) must be
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quantized using anticommutation relations. We have seen how to derive the fundamen-

tal properties of these free fields and in particular we have seen that they always lead to

positive energies. In the next chapter, we will see out to deal with interactions between

the fields and compute some the cross sections for simple scattering processes.

Typical questions that can come out during the exam:

1. Prove Nöther’s theorem for internal symmetries;

2. Derive and discuss the energy-momentum tensor;

3. Discuss the quantization of bosonic and fermionic harmonic oscillators;

4. Describe the procedure of field quantization;

5. Derive the Hamiltonian of the Klein–Gordon field;

6. Derive the Hamiltonian of the Dirac field;

7. Discuss the quantization of the electromagnetic field.

3.A Variation of the action in presence of explicit depen-

dence on coordinates

In Eq. (3.33) we assumed that the Lagrangian did not depend explicitly on the coordi-

nates. If we relax this assumption, we need to include some extra terms (see, e.g., [29, Sec.

3.2]).

δS =
∫

Ω
d4x′ L(φ′, ∂µφ

′, x′µ)−
∫

Ω
d4x L(φ, ∂µφ, xµ) (3.292)

We describe the coordinate transformation as

xµ → x′µ = xµ + δxµ (3.293)

We need to consider the Jacobian of this transformation

d4x′ =
∣

∣

∣

∣

∂x′µ

∂xλ

∣

∣

∣

∣

d4x =
∣

∣δ
µ
λ + ∂λδxµ

∣

∣d4x ≈ [1 + ∂µ(δxµ)]d4x (3.294)

To understand the last step, let us check a two-dimensional example

det

(

1 + ∂0δx0 ∂0δx1

∂1δx0 1 + ∂1δx1

)

≈ 1 + ∂0δx0 + ∂1δx1 (3.295)

all other terms of the determinant are higher-order in the variation.
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Including the effect of the Jacobian, we obtain for the variation of the action

δS =
∫

Ω
d4x

{

L(φ′, ∂µφ
′, x′µ)−L(φ, ∂µφ, xµ) + L(φ′, ∂µφ

′, x′µ)∂µ(δxµ)

}

(3.296)

writing the Lagrangian as

L(φ′, ∂µφ
′, x′µ) = L(φ, ∂µφ, xµ) +

∂L
∂φr

δφr +
∂L

∂(∂µφr)
∂µ(δφr) +

(

∂µL
)

δxµ (3.297)

and stopping at first order in the variations, we get

δS =
∫

Ω
d4x

{

∂L
∂φr

δφr +
∂L

∂(∂µφr)
∂µ(δφr) +

(

∂µL
)

δxµ + L∂µ(δxµ)

}

=
∫

Ω
d4x

{

∂L
∂φr

δφr +
∂L

∂(∂µφr)
∂µ(δφr) + ∂µ

(

Lδxµ
)

} (3.298)

which eventually leads to Eq. (3.35).





4

Interacting quantum fields

In the previous chapter we introduced the essential concepts in the description of free

fields. However, fields with no interactions are quite dull. Interesting phenomena emerge

when we put different fields together and we assume the presence of interactions among

them. The resulting Lagrangian density will typically be the sum of the free Lagrangians

plus an interaction Lagrangian

L = L0 + LI . (4.1)

The interaction Lagrangian contains a parameter that defines the strength of the interac-

tion, the so-called “coupling constant.”

Finding the analytic solutions of the corresponding equation of motions is normally

unfeasible. Therefore, the path to follow is to consider the interaction as a perturbation

of the free-field situation. In other words, the problem can be studied as an expansion in

the coupling constants, truncated to a certain order.

4.1 Lagrangians with interactions

For an extended discussion, see Sec. 4.1 of Peskin–Schroeder.

The ways to include interactions between fields are restricted by the usual require-

ments that the Lagrangian density must be a Lorentz scalar and must be Hermitian. Nor-

mally, we also prefer to avoid introducing derivatives of the fields in the interaction part.

This guarantees that the conjugate fields of the interacting theory correspond still to the
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λφ4 “ABC” Yukawa Fermi QED Scalar QED

(a) (b) (c) (d) (e) (f)

Figure 4.1: Interactions between fields can be represented diagrammatically in terms of vertices.

free-field theory. All canonical commutation or anticommutation rules are thus unaf-

fected.

In spite of the constraints, the possibilities to build a Lagrangian with interactions

are endless. A strong constrain is posed by the possibility of renormalizing the theory.

The rule of thumb in this case is: renormalizable theories must have coupling constant

with dimensions [M]d with d ≥ 0 (see, e.g., Sec. 5.6 of Maggiore for a relatively concise

discussion of this issue).

Apart from QED (which we are going to analyze in the next section), instructive ex-

amples are the so-calledφ4 theory, “ABC” theory, Yukawa theory,and scalar QED.

• In theφ4 theory, a real scalar field interacts with itself. The Lagrangian is

Lφ4 = LKG + LI =
1

2
∂µφ∂µφ− 1

2
m2φ2 − λ

4!
φ4. (4.2)

The fields have dimensions [M], therefore the coupling λ is adimensional and the

theory is renormalizable. The interaction could be described by the symbolic vertex

in Fig. 4.1 (a).

• The “ABC” theory (see Aitchison–Hey) is constructed with three distinct real scalar

fields that interact together

LABC = LKGA + LKGB + LKGC + LI = ∑
i=A,B,C

(1

2
∂µφi∂

µφi −
1

2
m2

iφ
2
i

)

− λφAφBφC.

(4.3)

The coupling constant has dimension [M]1. The corresponding vertex is depicted in

Fig. 4.1 (b).

• The Yukawa theory describes the interaction between a scalar field and a fermionic

field

LYuk = LDir + LKG + LI = ψ
(

i/∂−m
)

ψ+
1

2

(

∂µφ∂µφ−m2φ2
)

+ gψψφ. (4.4)

The field φ has dimension [M], while the field ψ has dimension [M]3/2, therefore

the coupling constant is adimensional also in this case. The Yukawa theory can be

used to describe the interactions between nucleons and pions. The corresponding

vertex is depicted in Fig. 4.1 (c).
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• We will shortly mention scalar QED at the end of the next section. There are in this

case two vertices, depicted in Fig. 4.1 (f).

An example of nonrenormalizable theory is a theory containing a four-fermion inter-

action

LI = GFψψψψ. (4.5)

In this case, the coupling constant must have dimensions [M]−2. This Lagrangian was

used by Fermi described the production of β radiation inside the nucleus in 1933. It rep-

resented the first application of quantum field theory outside QED. Although valid only

approximately, it gave account of the fact that the neutron can decay in a proton and an

electron, without being necessarily constituents of the neutron, and in addition it includes

the emission of a neutrino, the particle that Pauli proposed to resolve the problem of the

missing energy in β decay. The corresponding vertex is depicted in Fig. 4.1 (d).

4.1.1 The QED Lagrangian

In this course, we are mainly interested in the QED case, where fermions interact with the

electromagnetic field.

A way to derive the form of the QED Lagrangian is to invoke the principle of local

gauge symmetry. We know that the Dirac Lagrangian is invariant under a global gauge

transformation (i.e., changing the phase of the fields by a constant amount everywhere).

What happens if we require the theory to be invariant under a local gauge transformation,

i.e., a different phase change for any point in space? The transformation is

ψ(x)→ ψ′(x) = e−iqχ(x)ψ(x). (4.6)

The original Dirac Lagrangian is not invariant under this transformation, because

i∂µψ
′ = e−iqχ(x)i∂µψ(x) + qe−iqχ(x)ψ(x)∂µχ(x), (4.7)

which means

L′Dir −LDir = qψγµψ∂µχ (4.8)

To cancel the symmetry-breaking term, we are looking for an interaction term that

transforms as

L′I −LI = −qψγµψ∂µχ. (4.9)

We discover that if we make the electron interact with the EM field

LI − qψγµψAµ (4.10)

then the result is invariant under the combined transformation

Aµ(x)→ Aµ′(x) = Aµ(x) + ∂µχ(x) ψ(x)→ ψ′(x) = e−iqχ(x)ψ(x). (4.11)
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The first transformation is the usual gauge transformation of the EM potential. This is the

motivation to call the phase transformation applied to the Dirac fields a gauge transfor-

mation (global or local).

If we introduce the useful concept of the covariant derivative1

Dµ = ∂µ + iqAµ(x) (4.12)

where q is the charge of the particle (for the electron q = −e), we can write the Lagrangian

as

L = ψ
(

i/D−m
)

ψ. (4.13)

The starting QED Lagrangian can be written as (for the electron q = −e),

LQED = LDir + LEM + LI = ψ
(

i/∂−m
)

ψ− 1

4
FµνFµν + eψγµψAµ . (4.14)

The last term corresponds to the interaction of the electromagnetic field with a current

jµ = −eψγµψ, which is the conserved current of the Dirac field associated to global

gauge invariance. The parameter e represents the electric charge, which is also connected

to the fine structure constant

α =
e2

4π
≈ 1

137
. (4.15)

This number represents a measure of the strength of the interaction between the fields. It

is a small number, which justifies a perturbative treatment.

Note that the interaction Lagrangian does not contain derivatives of the fields.

Using the covariant derivative we can write the QED Lagrangian as

L = ψ
(

i/D−m
)

ψ− 1

4
FµνFµν . (4.16)

The equations or motion for the interacting theory are different. They turn out to be

(

i/D−m
)

ψ = 0, (4.17)

∂νFνµ = −eψγµψ. (4.18)

They correspond, respectively, to the Dirac equation coupled to the electromagnetic field

by the minimal coupling prescription and to Maxwell’s equation coupled to the electric

current associated to the fermion field.

Let us briefly discuss also scalar QED. In this case, photons are coupled to a complex

Klein–Gordon field. The recipe to obtain the interaction is similar to the QED case: it is

sufficient to replace the normal derivatives of the Klein–Gordon Lagrangian with covari-

ant derivatives. The Lagrangian is then gauge-invariant. When expanding the covariant

1Note that there can be different conventions for the sign in front of q in the covariant derivative. This is

ultimately irrelevant, because it has to do with the choice of what we consider to be particles and antiparti-

cles.
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derivative, two types of interaction occur: a vertex with one photon field and two scalar

fields and a vertex with two photons and two scalars.

Lsc. QED = LKG* + LEM + LI

= ∂µφ
†∂µφ−m2φ†φ− 1

4
FµνFµν − ieAµ

(

φ†∂µφ−φ∂µφ†
)

+ e2 AµAµφ†φ.

(4.19)

It may seem problematic to have an interaction which contains the derivatives of the

fields, but in reality this case is still treatable with standard techniques (see, e.g., the dis-

cussion at the end of Sec. 7.4 of Aitchison–Hey).

4.2 The scattering matrix

The material of this section is presented in Quantum Mechanics textbooks (see, e.g., the

treatment of time-dependent perturbation theory in Sakurai, the treatment of the scatter-

ing matrix in the book by Boffi), but it is also reviewed in, e.g., Mandl–Shaw, Sec. 6.2, and

Peskin-Schroeder, Sec. 4.5.

In quantum mechanics, the effect of perturbations can be described by means of the

scattering matrix. The scattering matrix describes the probability to make a transition

from an initial state
∣

∣i
〉

, long before the scattering occurs, to a final state
∣

∣ f
〉

, long after

the scattering occurs. The initial and final states are considered to be eigenstates of the

unperturbed Hamiltonian. The definition of the scattering matrix can be taken as
∣

∣ f
〉

=
∣

∣Ψ(t = ∞)
〉

= S
∣

∣Ψ(t = −∞)
〉

= S
∣

∣i
〉

. (4.20)

The transition from
∣

∣i
〉

to
∣

∣ f
〉

is then associated to the matrix elements of the scattering

matrix

S f i =
〈

f
∣

∣S
∣

∣i
〉

. (4.21)

The scattering matrix corresponds to the limit of the time-evolution operator in Dirac

picture

S ≡ lim
ti→−∞
t f→∞

U(t f , ti). (4.22)

The scattering matrix is unitary, i.e.,

SS† = S†S = 1 ∑
f

|S f i|2 = 1, (4.23)

which is a mathematical way to express the conservation of probability.

Without deriving it, we give for granted the following expansion (Dyson’s expansion)

of the S matrix

S =
∞

∑
n=0

(−i)n
∫

∞

−∞
dt1

∫ t1

−∞
dt2 . . .

∫ tn−1

−∞
dtnHI(t1)HI(t2) . . . HI(tn)

=
∞

∑
n=0

(−i)n

n!

∫

∞

−∞
dt1

∫

∞

−∞
dt2 . . .

∫

∞

−∞
dtnT

[

HI(t1)HI(t2) . . . HI(tn)
]

,

(4.24)
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where we have used the time-ordered product T[. . .], yet another form of operator order-

ing. The operators are ordered so that the later times stand to the left of earlier times.

Note that the S matrix can be written as an exponential, since its definition corre-

sponds to the expansion of an exponential. Moreover, note that at “zeroth” order in the

couplings the S matrix is just the identity, which means that nothing happens to the initial

states.

We can use the above results almost directly. There are only two things we have to care

about. First, we need to switch to Hamiltonian density, which is a trivial step. Second, we

have to keep in mind that switching the order of fermionic operators involves adding an

extra minus sign.

The time-ordered product for two operators can be written explicitly as

T
[

A(x1)B(x2)] = θ(t1 − t2)A(x1)B(x2) + (−1)Pθ(t2 − t1)B(x2)A(x1). (4.25)

where P is the number of interchanges of neighboring fermion operators required to

achieve the desired time ordering. For instance, P = 0 if A and B are two bosonic fields,

and P = 1 if A and B are two fermionic fields. Note, however, that the fermion inter-

changes are essentially irrelevant when it comes to reordering interaction Hamiltonians,

which in all cases of interest for us always contain two fermionic fields (in order to have

a scalar Lagrangian density).

In summary, we can write

S =
∞

∑
n=0

(−i)n

n!

∫

∞

−∞
d4x1

∫

∞

−∞
d4x2 . . .

∫

∞

−∞
d4xnT

[

HI(x1)HI(x2) . . .HI(xn)
]

. (4.26)

For convenience, we can rewrite the Dyson expansion in this way

S =
∞

∑
n=0

S(n) (4.27)

where

S(n) =
(−i)n

n!

∫

∞

−∞
d4x1

∫

∞

−∞
d4x2 . . .

∫

∞

−∞
d4xnT

[

HI(x1)HI(x2) . . .HI(xn)
]

. (4.28)

4.3 Scattering matrix and Feynman diagrams

We now consider the problem of computing the scattering matrix and in particular the

single terms of the Dyson expansion, see Eq. (4.28). We note that, if the interaction La-

grangian does not contain derivatives of the fields, we have

HI = −LI . (4.29)

The zeroth order term, S(0), is trivially the identity. No scattering takes place in this case.
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4.3.1 First-order contributions in the “ABC” theory

As an illustration of the calculation of a scattering amplitude, we first consider the “ABC”

theory discussed in Aitchison–Hey, Sec. 6.3.

The interaction Hamiltonian reads

HI = λN
[

φA(x)φB(x)φC(x)
]

= λN
[

(

φ+
A(x) +φ−A(x)

)(

φ+
B (x) +φ−B (x)

)(

φ+
C (x) +φ−C (x)

)

]

.
(4.30)

We remind ourselves the expression and meaning of the components of the field op-

erators

φ+(x) =
∫

d3k

(2π)32ωk
a(~k)e−ikx particle absorption, (4.31)

φ−(x) =
∫

d3k

(2π)32ωk
a†(~k)eikx particle creation. (4.32)

There are eight possible terms in the expansion of the above interaction, each corre-

sponding to a different process. For illustration purposes, let’s start from a process that

starts with particle C and ends with particle A and B.

The initial state is (in the following, let us skip the vector notation inside the argument

of the ladder operators)
∣

∣i
〉

= a†C(pC)
∣

∣0
〉

, (4.33)

the final state is
〈

f
∣

∣ =
〈

0
∣

∣aA(pA)aB(pB). (4.34)

The term of the scattering-matrix expansion under consideration is

S
(1)
(a)

= −iλ
∫

∞

−∞
d4x N

[

φ−A(x)φ−B (x)φ+
C (x)

]

. (4.35)

No other terms can contribute to the transition we want to compute, i.e., the expectation

value of any other combination of the fields would vanish between those particular initial

and final states. Note that the operator is in this case already normal ordered, which is

however not relevant because the A, B, and C field operators commute.

The transition amplitude from the initial to final states defined above is

〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= −iλ
∫

d4x
〈

0
∣

∣aA(pA)aB(pB)
(

φ−A(x)φ−B (x)φ+
C (x)

)

a†C(pC)
∣

∣0
〉

. (4.36)

We replace the usual expression for the field operators

〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= −iλ
∫

d4x
〈

0
∣

∣aA(pA)aB(pB)

×
∫

d3k

(2π)32ωk
a†A(k)e

ikx
∫

d3q

(2π)32ωq
a†B(q)e

iqx
∫

d3k′

(2π)32ωk′
aC(k

′)e−ik′x

× a†C(pC)
∣

∣0
〉

.

(4.37)
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C

pC A

pA

B

pB

Figure 4.2: Feynman diagram corresponding to the decay C → AB at first order in the ”ABC” theory

containing three different scalar fields.

We have now expressions such as

aC(k
′)a†C(pC)

∣

∣0
〉

= [aC(k
′), a†C(pC)]

∣

∣0
〉

+✭✭✭✭✭✭✭✭✭
a†C(pC)aC(k

′)
∣

∣0
〉

= (2π)32ωk′δ(~k
′ −~pC)

∣

∣0
〉

,

(4.38)

and similarly for the A and B fields. We see here why there could not be contributions

from other terms in the interaction Hamiltonian.

Replacing these results into the transition amplitude

〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= −iλ
∫

d4x e−i(pC−pB−pA)x

= −(2π)4iλ δ4
(

pC − pB − pA

)

.
(4.39)

The last delta function expresses the conservation of four-momentum.

We can rewrite the above result introducing the so-called Feynman amplitudeM
〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= (2π)4 δ4
(

pC − pB − pA

)

iM(1)
(a)

. (4.40)

where

iM(1)
(a)

= −iλ. (4.41)

The scattering amplitudeM is often defined with different prefactors, e.g., 1 or−i instead

of i. This detail is irrelevant in the end, since observables are related to the modulus

squared of the amplitude.

The scattering amplitude can be described by the Feynman diagram drawn in Fig. 4.2.

In this simple case, there is only one Feynman rule to take into consideration: to each

vertex, we need to associate a factor −iλ.

What kind of observable can we compute with this result? We can study the decay

rate of the process under study, and consequently the half-life. Without proving it, we

give the formula for the decay rate of a particle with mass m and momentum p into n

particles with momenta p f (see, e.g., Peskin-Schroeder, end of Sec. 4.5)

dΓ =
1

2m
|M|2 ∏

f

d3 p f

(2π)32E f
(2π)4δ4

(

p− ∑p f

)

. (4.42)

The formula is valid in the particle rest-frame, which is also the center-of-mass frame

(CMF) of the decay products.
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We can specialize the above formula for the decay C→ AB

dΓ =
1

2mC
|M|2 d3 pA

(2π)32EA

d3 pB

(2π)32EB
(2π)4δ4

(

pC − pA − pB

)

. (4.43)

At this point, we have to decide with respect to which variables we want our decay

rate to be differential. Clearly, the three components of momentum of particle A and the

three components of particle B are redundant, because the four-dimensional delta func-

tion introduces four constraints. In principle, we can keep the decay rate differential with

respect to two variables. We could for instance choose to study the angular distribution

of the decay products in the center-of-mass of the system. The involved momenta are

pC
CMF
=
(

mC, 0, 0, 0
)

, (4.44)

pA
CMF
=
(

EA, |~pA| sinθ cosφ, |~pA| sinθ sinφ, |~pA| cosθ
)

, (4.45)

pB
CMF
=
(

EB, −|~pA| sinθ cosφ, −|~pA| sinθ sinφ, −|~pA| cosθ
)

, (4.46)

with EA =
√

|~pA|2 + m2
A and similarly for EB. On top of this, we must have EA + EB =

mC, which puts in turn the constraint

|~pA| =
1

2mC

√

(

m2
C − (mA + mB)2

)(

m2
C − (mA −mB)2

)

. (4.47)

There are several ways to obtain the final result in a convenient way. For instance, we

can follow these steps

d3 pA

(2π)32EA

d3 pB

(2π)32EB
(2π)4δ4

(

pC − pA − pB

)

=
d3 pA

(2π)32EA

d3 pB

(2π)32EB
(2π)4δ3

(

~pC −~pA −~pB

)

δ
(

EC − EA − EB

)

=
|~pA|2d|~pA|dΩ
(2π)32EA

1

2EB
(2π)δ

(

EC − EA − EB

)

∣

∣

∣

∣

~pC=~pA+~pB

=
|~pA|2dΩ

(2π)22EA2EB

∣

∣

∣

∣

∂(EA + EB)

∂|~pA|

∣

∣

∣

∣

−1∣
∣

∣

∣

pC=pA+pB

.

(4.48)

In the last step, we used the properties of the delta function to change from a delta func-

tion expressed in terms of EA + EB to an expression in terms of |~pA|.
The above steps are general. If we want now to use the center-of-mass variables, we

ought to write

∂(EA + EB)

∂|~pA|
=

∂

∂|~pA|
(
√

|~pA|2 + m2
A +

√

|~pA|2 + m2
B

)

= |~pA|
(

1

EA
+

1

EB

)

=
|~pA| mc

EA EB
.

(4.49)
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Putting things together, including the calculation of M, we obtain the following ex-

pression for the decay rate

dΓ =
1

32π2

|~pA|
m2

C

λ2dΩ. (4.50)

Note that the decay rate in this case is isotropic, i.e., independent of the angles. Breaking

of isotropy can occur if we deal with particles with spin, but not with scalar particles.

Note also that the decay rate would go to zero if mC ≤ mA + mB (due to Eq. (4.47)).

Integration over the solid angle in this case gives just a 4π factor, i.e.,

Γ =
1

8π

|~pA|
m2

C

λ2. (4.51)

The total decay rate has the correct dimensions of a mass or energy (due to the fact that λ

in this theory has the dimension of a mass). In natural units, the inverse of the decay rate

has the dimesions [M]−1, which multiplied by h̄/c2 gives a time in standard units and

corresponds to the lifetime of state C.

4.3.2 First-order contributions in QED

For QED, the interaction Hamiltonian reads

HI = −eN
[

ψ /Aψ
]

= −eN
[

(

ψ
+
+ψ

−)(
/A+ + /A−

)(

ψ+ +ψ−
)

]

.
(4.52)

We remind ourselves once more the meaning of the different components of the fields

ψ
+
(x) = ∑

s

∫

d3k

(2π)32ωk
ds(~k)vs(~k)e

−ikx positron absorption, (4.53)

ψ
−
(x) = ∑

s

∫

d3k

(2π)32ωk
c†s(~k)us(~k)e

ikx electron creation, (4.54)

Aµ+(x) =
3

∑
λ=0

∫

d3k

(2π)32ωk
ǫ
µ
λ(
~k)aλ(~k)e

−ikx photon absorption, (4.55)

Aµ−(x) =
3

∑
λ=0

∫

d3k

(2π)32ωk
ǫ
µ∗
λ (~k)a†λ(~k)e

ikx photon creation, (4.56)

ψ+(x) = ∑
s

∫

d3k

(2π)32ωk
cs(~k)us(~k)e

−ikx electron absorption, (4.57)

ψ−(x) = ∑
s

∫

d3k

(2π)32ωk
d†s(~k)vs(~k)e

ikx positron creation. (4.58)

There are eight possible terms in the expansion of the above interaction. For illustra-

tion purposes, let us start from the term ψ
−
/A−ψ+. This term can be nonzero only if in
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e−(si)
ki

e−(s f )
k f

γ(λ f )q f

Figure 4.3: Feynman diagram corresponding to the emission of a photon by an electron (Bremsstrahlung)

at first order in QED.

the initial state there is an electron (which is then destroyed by ψ+) and the final state

contains an electron and a photon. Therefore, it describes the emission of a photon from

an electron. This process is depicted in the Feynman diagram in Fig. 4.3

The initial state is
∣

∣i
〉

= c†si
(ki)

∣

∣0
〉

, (4.59)

the final state is
〈

f
∣

∣ =
〈

0
∣

∣cs f
(k f )aλ f

(q f ). (4.60)

The term of the scattering-matrix expansion under consideration is

S
(1)
(a)

= ie
∫

∞

−∞
d4x N

[

ψ
−
(x) /A−(x)ψ+(x)

]

. (4.61)

In this case, the operators are already normal-ordered. The transition amplitude from the

initial to final states defined above is
〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= ie
∫

d4x
〈

0
∣

∣cs f
(k f )aλ f

(q f )
(

ψ
−
(x) /A−(x)ψ+(x)

)

c†si
(ki)

∣

∣0
〉

. (4.62)

We replace the usual expression for the field operators

〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= ie
∫

d4x
〈

0
∣

∣cs f
(k f )aλ f

(q f )

×∑
s

∫

d3k

(2π)32ωk
c†s(k)us(k)e

ikx

×∑
λ

∫

d3q

(2π)32ωq
a†λ(q)/ǫ

∗
λ(q)e

iqx

×∑
s′

∫

d3k′

(2π)32ωk′
cs(k

′)us(k
′)e−ik′xc†si

(ki)
∣

∣0
〉

.

(4.63)

Nonzero results can be obtained only if the spins and momenta of the fields correspond to

the spins and momenta of the initial or final states. Formally, as we as seen in the previous

section, we can replace products such as cs f
(k f )c

†
s(k) with their normal-ordered version

minus the anticommutators (or plus their commutator for the bosonic a operators), which

give us the usual delta functions. There is only a subtlety concerning unphysical photon

states. We have

aλ f
(q f )a†λ(q)

∣

∣0
〉

= [aλ f
(q f ), a†λ(q)]

∣

∣0
〉

+
✘✘✘✘✘✘✘✘✘
a†λ(q)aλ f

(q f )
∣

∣0
〉

= (2π)32ωq(−gλλ f
)δ(~q−~q f )

∣

∣0
〉

.

(4.64)
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Since the final state must be a physical state, λ f cannot be scalar or longitudinal, but

only transverse, so that −gλλ f
= δλλ f

. Alternatively, we can say that a physical state can

contain scalar and longitudinal polarizations, but only in equal numbers (cf. Eq. (3.281)),

so that the contributions of the two polarizations exactly cancel.

Therefore

〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= ie
∫

d4x us f
(k f ) /ǫ

∗
λ f
(q f ) usi

(ki) e−i(ki−q f−k f )x

= (2π)4ie us f
(k f ) /ǫ

∗
λ f
(q f ) usi

(ki) δ
4
(

ki − q f − k f

)

.
(4.65)

The last delta function expresses the conservation of four-momentum.

We can rewrite the above result introducing the so-called Feynman amplitudeM
〈

f
∣

∣S
(1)
(a)

∣

∣i
〉

= (2π)4 δ4
(

ki − q f − k f

)

iM(1)
(a)

. (4.66)

where

iM(1)
(a)

= ie us f
(k f ) /ǫ

∗
λ f
(q f ) usi

(ki). (4.67)

The scattering amplitudeM is often defined with different prefactors, e.g., 1 or−i instead

of i. This detail is irrelevant in the end, since observables are related to the modulus

squared of the amplitude.

The Feynman amplitude is a Dirac scalar. If we write the Dirac indices explicitly, we

obtain

iM(1)
(a)

= ie us f A(k f ) (/ǫ
∗
λ f
(q f ))AB usiB(ki)

= ie usiB(ki)us f A(k f )(/ǫ
∗
λ f
(q f ))AB = ieTr

[(

usi
(ki)us f

(k f )
)(

/ǫ∗λ f
(q f )

)] (4.68)

The possibility of using traces in Dirac space is particularly useful in some practical cal-

culations, as we will see in the next sections.

The transition we considered (photon emission from an electron), from the point of

view of the QED interaction is in principle allowed and is of order
√
α. However, in

the scattering process we assume that the initial and final states correspond to free field

configurations (eigenstates of the free field operators). As such, they have to fulfill the

on-shellness condition k2 = m2 in the case of the electron/positron and q2 = 0 in the case

of the photon. Fulfilling this condition and at the same time the condition of conservation

of four momentum is not possible

{

k2
i = k2

f = m2 q2
f = 0

k2
i = (k f + q f )

2 = k2
f + 2k f · q f + q2

f

⇒ q f = 0. (4.69)

This type of transition is possible only if one of the particles is off-shell, i.e., k2 6= m2.

Off-shell particles can exist only as intermediate states, never as initial or final states, and

are called “virtual particles.”

Other possible processes included in S(1) are:
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• N
[

ψ
−
/A+ψ+

]

: photon absorption by an electron;

• N
[

ψ
+
/A+ψ−

]

: photon absorption by a positron (note that normal ordering will in-

duce an overall change of sign for this choice) ;

• N
[

ψ
+
/A−ψ−

]

: photon emission by a positron (note that normal ordering will induce

an overall change of sign for this choice);

• N
[

ψ
+
/A−ψ+

]

: electron-positron annihilation into a photon;

• N
[

ψ
−
/A+ψ−

]

: electron-positron creation from a photon;

• N
[

ψ
+
/A+ψ+

]

: annihilation of an electron, a positron, and a photon;

• N
[

ψ
−
/A−ψ−

]

: creation of an electron, a positron, and a photon;

Just to see another example, let’s see what happens to the electron-positron creation

case. The initial and final states are

∣

∣i
〉

= a†λi
(qi)

∣

∣0
〉

,
〈

f
∣

∣ =
〈

0
∣

∣cs f
(k f )dr f

(p f ). (4.70)

The transition amplitude for this process is

〈

f
∣

∣S
(1)
(b)

∣

∣i
〉

= ie
∫

d4x
〈

0
∣

∣cs f
(k f )dr f

(p f )
(

ψ
−
(x)γαψ−(x)A+

α (x)
)

a†λi
(qi)

∣

∣0
〉

. (4.71)

The normal-ordering prescription requires us to move the A+ field, containing an ab-

sorption operator, to the right. This is not a real issue in the present case, since the A

field commutes with the ψ field. However, to make things more transparent we wrote

the operator in the correct way.

Without explicitly repeating the calculations, we obtain

〈

f
∣

∣S
(1)
(b)

∣

∣i
〉

= ie
∫

d4x us f
(k f ) /ǫλi

(qi) vr f
(p f ) e−i(qi−p f−k f )x

= (2π)4ie us f
(k f ) /ǫλi

(qi) vr f
(p f ) δ

4
(

qi − p f − k f

)

.
(4.72)

In general, the scattering matrix is connected to the Feynman amplitude via the rela-

tion
〈

f
∣

∣S
∣

∣i
〉

= 1+ (2π)4 δ4
(

∑ki − ∑k f

)

iM(i→ f ) . (4.73)

The explicit form of the Feynman amplitude at any order of the expansion in the cou-

pling constant can be reconstructed using Feynman diagrams and Feynman rules. For

instance, given the initial and final states considered above (e.g, electron going to elec-

tron and photon), there is only one possible diagram at order
√
α (the so-called “leading
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order”). We need simply to associate (dropping for simplicity the spin indices):

Incoming fermion: →
k

= u(k), (4.74)

Outgoing fermion: →
k

= u(k), (4.75)

Incoming photon:
µ→

q

= ǫµ(q) (4.76)

Outgoing photon:
µ →

q

= ǫ∗µ(q) (4.77)

Fermion-photon vertex:
µ

= ieγµ (4.78)

The e in the vertex is consistent with the fact that the electron has charge −e, and it is

what we conventionally identify as the “particle” and we associate with u spinors.2 For

a positron, its antiparticle, the vertex remains the same, but the incoming and outgoing

positrons are denoted by

Incoming antifermion: →
k

= v(k), (4.79)

Outgoing antifermion: →
k

= v(k). (4.80)

Note that for external antifermions, the direction of the momentum is normally taken

opposite to the direction of the fermion line.

When computing a Feynman amplitude from Feynman rules, keeping track of the

overall sign due to the inversion of fermion fields is relevant when several Feynman

diagrams are contributing to a process. Only the relative sign between the Feynman

diagrams matters, not their absolute sign. Whenever two diagrams are related by an

interchange of two fermion lines, a negative sign must be added to one of the two.

4.4 Wick’s theorem

The S matrix is expressed in terms of time-ordered products (T-products). Moreover, the

interaction Hamiltonian is expressed in terms of normal products (N-products). To effi-

2Note that in different textbooks convetions may be different, as for the case of the covariant derivative.

Ultimately, the absolute sign of the interaction does not change.
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ciently compute the higher-order contributions to the S matrix, we should first consider

how to simplify the time-ordered product of several operators.

The definition of normal product in Eq. (3.119) allows us to write

A(x1)B(x2) = N[A(x1)B(x2)] +
〈

0
∣

∣A(x1)B(x2)
∣

∣0
〉

. (4.81)

Note also that

N
[

A(x1)B(x2)
]

= (−1)PN
[

B(x2)A(x1)
]

. (4.82)

Let us now assume A and B are two generic field operators and consider the time-

ordered product (for t1 6= t2)

T
[

A(x1)B(x2)] = θ(t1 − t2)A(x1)B(x2) + (−1)Pθ(t2 − t1)B(x2)A(x1)

= θ(t1 − t2)
{

N[A(x1)B(x2)] +
〈

0
∣

∣A(x1)B(x2)
∣

∣0
〉

}

+ (−1)Pθ(t2 − t1)
{

N[B(x2)A(x1)] +
〈

0
∣

∣B(x2)A(x1)
∣

∣0
〉

}

= N[A(x1)B(x2)] +
〈

0
∣

∣T
[

A(x1)B(x2)
]∣

∣0
〉

(4.83)

where in the last step we used (4.82). The last term of the above equation is the vacuum

expectation value of a time-ordered product of two fields, also known as contraction. It

can be nonzero only if they are two fields of the same type, in which case it is called the

Feynman propagator.

The above relation can be generalized to any number of field operators. To do this, we

first introduce the shorthand notations

A(x1)B(x2) =
〈

0
∣

∣T
[

A(x1)B(x2)
]∣

∣0
〉

(4.84)

and we further define

N
[

A1B2C3D4 . . . Ym . . . Zn

]

= (−1)P A1C3 B2Ym N
[

D4 . . . Zn

]

(4.85)

Eq. (4.83) can be generalized to any number of fields, in which case

T
[

A1B2 . . . Zn

]

= N
[

A1B2 . . . Zn + all possible contractions
]

. (4.86)

This identity is known as Wick’s theorem [34]. Eq. (4.83) is the particular case for two

field operators. The proof by induction starting from the 2-field case is outlined, e.g., in

Peskin–Schroeder, Sec. 4.3.

In the calculation of the S matrix, we need to consider a time-ordered product of inter-

action Hamiltonians, each one containing normal-ordered operators. In this case, Wick’s

theorem remains valid, but the contractions between operators at equal times (i.e., belong-

ing to the same Hamiltonian operator) should not be considered. Consider for instance

the simple case of an operator composed by two bosonic fields

T
[

N
[

φ(x)φ(x)
]

]

= N
[

φ(x)φ(x)
]

+
✘✘✘✘✘✘φ(x)φ(x) (4.87)
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The second term must be omitted because the fields are already normal-ordered. This

observation is generalized into the following version of Wick’s theorem:

T
[

N
[

A1B1 . . . Z1

]

. . . N
[

AnBn . . . Zn

]

]

= N
[

A1B1 . . . Zn + all possible contractions, excluding equal-time contractions
]

.

(4.88)

4.5 Feynman propagators

As we have seen, the calculation of the scattering matrix requires the knowledge of con-

tractions involving field operators. Only certain contractions can be nonzero, since they

must involve the same number of creation and annihilation operators. As a matter of fact,

we only need contractions between two fields of the same nature, which are the so-called

Feynman propagators.

4.5.1 The scalar propagator

The Feynman propagator for a scalar field is defined as

i∆F(x1 − x2) = φ(x1)φ(x2) =
〈

0
∣

∣T
[

φ(x1)φ(x2)
]∣

∣0
〉

=
〈

0
∣

∣θ(t1 − t2)φ(x1)φ(x2) +θ(t2 − t1)φ(x2)φ(x1)
∣

∣0
〉

(4.89)

We split the field in positive and negative frequency parts and we remember thatφ+ con-

tains an absorption operator and therefore gives zero when acting on the vacuum, while

φ− contains a creation operator and therefore gives zero when acting on the vacuum to

its left. Therefore

i∆F(x1 − x2) =
〈

0
∣

∣θ(t1 − t2)φ
+(x1)φ

−(x2) +θ(t2 − t1)φ
+(x2)φ

−(x1)
∣

∣0
〉

(4.90)

The Feynman propagator is composed by two contributions: when t1 > t2, a particle is

created at x2 and destroyed at x1; when t2 > t1, a particle is created at x1 and destroyed

at x2. We can represent the propagator graphically as in Fig. 4.4.

At this point, we observe that

〈

0
∣

∣φ+(x1)φ
−(x2)

∣

∣0
〉

=
[

φ+(x1),φ
−(x2)

]

. (4.91)

Therefore, we eventually obtain

i∆F(x1 − x2) = θ(t1 − t2)
[

φ+(x1),φ
−(x2)

]

+θ(t2 − t1)
[

φ+(x2),φ
−(x1)

]

. (4.92)
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Figure 4.4: Graphical representation of the two time-ordered contributions to the Feynman propagator for a

real scalar field.

The calculation of the commutator is not difficult. We use the usual expression of the

field operators of Eq. (4.32) and then we carry out the calculation of the commutator

[

φ+(x1),φ
−(x2)

]

=
∫

d3k1

(2π)32ωk1

∫

d3k2

(2π)32ωk2

[

a(~k1), a†(~k2)
]

e−ik1x1 eik2x2

=
∫

d3k1

(2π)32ωk1

∫

d3k2

(2π)32ωk2

(2π)32ωk2
δ(~k1 −~k2) e−ik1x1 eik2x2

=
∫

d3k1

(2π)32ωk1

e−ik1(x1−x2)

(4.93)

In conclusion, we get for the Feynman propagator (replacing the variables x1− x2 → x

and k1 → k)

i∆F(x) = θ(t)
∫

d3k

(2π)32ωk
e−ikx +θ(−t)

∫

d3k

(2π)32ωk
eikx

= θ(t)
∫

d3k

(2π)32ωk
e−iωktei~k·~x +θ(−t)

∫

d3k

(2π)32ωk
eiωkte−i~k·~x

=
∫

d3k

(2π)32ωk
ei~k·~x

[

θ(t) e−iωkt +θ(−t) eiωkt
]

.

(4.94)

(In the last step we changed the integration variable from k to −k in the second integral.)

Here the two contributions for t > 0 and t < 0 are still separated. However, some math-

ematics allows us to write the Feynman propagator with a more compact formula, mani-

festly Lorentz invariant, where the distinction between the two contributions disappears,

i.e.,

i∆F(x) =
∫

d4k

(2π)4

i e−ikx

(

k2 −m2 + iǫ
) , (4.95)

whereǫ is positive and a limit forǫ→ 0 is understood. It is important to stress that in this

formula k0 is not fixed to be equal toωk, as we implicitly assumed in the previous equations.

Let us verify the correspondence between this expression and that of Eq. (4.94). We
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Figure 4.5: Pole positions and choice of contours relevant for the calculation of the scalar propagator.

need to observe that

1

k2 −m2 + iǫ
=

1
(

k0
)2 − |~k|2 −m2 + iǫ

=
1

(

k0 −
√

|~k|2 + m2 + iǫ′
)(

k0 +
√

|~k|2 + m2 − iǫ′
)

=
1

(

k0 −ωk + iǫ′
)(

k0 +ωk − iǫ′
) ,

(4.96)

where ǫ′ = ǫ/(2ωk) (always positive) and where we neglected terms of the order of ǫ2.

We can write the Feynman propagator as

i∆F(x) =
∫

d4k

(2π)4

i e−ikx

(

k0 −ωk + iǫ′
)(

k0 +ωk − iǫ′
)

=
∫

d3k dk0

(2π)4

i e−ik0t ei~k·~x
(

k0 −ωk + iǫ′
)(

k0 +ωk − iǫ′
)

(4.97)

We solve the integration over k0 using Cauchy’s theorem. We notice that the integrand

has two poles: one for k0 = ωk − iǫ′ and the second for k0 = −ωk + iǫ′. We further

note that for t > 0, the numerator vanishes for large negative imaginary values of k0:

to use Cauchy’s theorem we need to close the contour in the lower half of the complex

k0 plane, picking up the first pole (and adding a minus sign because the contour runs

clockwise). For t < 0, the numerator vanishes for large positive imaginary values of k0:

to use Cauchy’s theorem we need to close the contour in the upper half of the complex k0

plane, picking up the second pole. In conclusion, we obtain

i∆F(x) =
∫

d3k

(2π)4
ei~k·~x

(

θ(t)(−2π i)
i e−iωkt

2ωk
+θ(−t)(2π i)

i eiωkt

(−2ωk)

)

, (4.98)

which corresponds to Eq. (4.94).
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Figure 4.6: Graphical representation of the two time-ordered contributions to the Feynman propagator for a

complex scalar field. The only difference with respect to the real field is the need to specify the orientation of

the line in order to distinguish whether a particle or an antiparticle is produced.

In momentum space, the Feynman propagator for a scalar field (i.e., the Fourier trans-

form of Eq. (4.95)) is then given by

i∆F(k) =
i

(

k2 −m2 + iǫ
) . (4.99)

For a complex scalar field, the definition of the propagator is

i∆F(x1 − x2) =
〈

0
∣

∣T
[

φ(x1)φ
†(x2)

]∣

∣0
〉

=
〈

0
∣

∣θ(t1 − t2)φ
+(x1)φ

†−(x2) +θ(t2 − t1)φ
†+(x2)φ

−(x1)
∣

∣0
〉

.
(4.100)

The expression of the field operators is

φ+(x) =
∫

d3k

(2π)32ωk
a(~k)e−ikx particle absorption, (4.101)

φ−(x) =
∫

d3k

(2π)32ωk
b†(~k)eikx antiparticle creation, (4.102)

φ†+(x) =
∫

d3k

(2π)32ωk
b(~k)e−ikx antiparticle absorption, (4.103)

φ†−(x) =
∫

d3k

(2π)32ωk
a†(~k)eikx particle creation. (4.104)

There is no difference in the calculation with respect to the real case. However, the two

contributions can be interpreted in a slightly different way: when t1 > t2, a particle is cre-

ated at x2 and destroyed at x1; when t2 > t1, an antiparticle is created at x1 and destroyed

at x2 (see Fig. 4.6). In the graphical representation, we need to orient the direction of our

line, in order to distinguish the first case from the second.

The Feynman propagator is also a Green’s function. It is in fact a solution of the

inhomogeneous Klein–Gordon equation

(

∂µ∂µ + m2
)

∆F(x) = −δ4(x). (4.105)
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We can check the above statement

(

∂µ∂µ + m2
)

∆F(x) =
(

∂µ∂µ + m2
)

∫

d4k

(2π)4

e−ikx

(

k2 −m2 + iǫ
)

=
∫

d4k

(2π)4

(

− k2 + m2
)

e−ikx

(

k2 −m2 + iǫ
) = −δ4(x).

(4.106)

In the above, the position of the poles is irrelevant. Different Green’s functions can be

obtained using different prescriptions for the position of the poles. The one shown above,

with +iǫ, is the one that defines the Feynman propagator and is correctly connected to

the time-ordered product.

Green’s functions are important for the solution of differential equations. The most

common example is the solution of Poisson’s equation for the electrostatic potential

∇2Φ(~x) = −ρ(~x). (4.107)

It is easier to first solve the problem

∇2G(~x−~x′) = −δ(3)(~x−~x′). (4.108)

With the boundary condition that G→ 0 at large distances, the solution is

G(~x−~x′) =
1

4π |~x−~x′| (4.109)

and corresponds to the potential generated by a pointlike source. Then, the solution for a

generic charge distribution ρ is given by

Φ(~x) =
∫

d3x′ G(~x−~x′)ρ(~x′), (4.110)

corresponding to the linear superposition of the fields generated by many pointlike sources.

4.5.2 The fermion propagator

The calculation of the Feynman propagator for the Dirac field starts again from the defi-

nition

i
(

SF

)

AB
(x1 − x2) =

〈

0
∣

∣T
[

ψA(x1)ψB(x2)
]∣

∣0
〉

=
〈

0
∣

∣θ(t1 − t2)ψ
+
A(x1)ψ

−
B (x2)−θ(t2 − t1)ψ

+
B (x2)ψ

−
A(x1)

∣

∣0
〉

= θ(t1 − t2)
{

ψ+
A(x1),ψ

−
B (x2)

}

−θ(t2 − t1)
{

ψ
+
B (x2),ψ

−
A(x1)

}

.

(4.111)

The difference with respect to the scalar propagator is the presence of the anticommuta-

tors. The minus sign in the second term is due to the fermionic nature of the fields. The

Dirac indices A and B are explicitly written. The two contributions can be interpreted in
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Figure 4.7: Graphical representation of the two time-ordered contributions to the Feynman propagator for a

fermion field.

the same way as the complex scalar field: when t1 > t2, a particle is created at x2 and

destroyed at x1; when t2 > t1, an antiparticle is created at x1 and destroyed at x2. The

diagrammatic representation is given in Fig. 4.7

To calculate the anticommutators, we start from the usual expressions of the field op-

erators of Eqs. (4.53) and following. Starting from the first anticommutator

{

ψ+
A(x1),ψ

−
B (x2)

}

= ∑
s1 ,s2

∫

d3k1

(2π)32ωk1

∫

d3k2

(2π)32ωk2

{

cs1(
~k1), c†s2

(~k2)
}

us1 A(k1)us2B(k2) e−ik1x1 eik2x2

= ∑
s1 ,s2

∫

d3k1

(2π)32ωk1

∫

d3k2

(2π)32ωk2

(2π)32ωk2
δ(~k1 −~k2)δs1s2 us1 A(k1)us2B(k2) e−ik1x1 eik2x2

=
∫

d3k1

(2π)32ωk1

∑
s

usA(k1)usB(k1) e−ik1(x1−x2)

=
∫

d3k1

(2π)32ωk1

(/k1 + m)AB e−ik1(x1−x2)

(4.112)

The second anticommutator is similar

{

ψ
+
B (x2),ψ

−
A(x1)

}

= ∑
s1 ,s2

∫

d3k1

(2π)32ωk1

∫

d3k2

(2π)32ωk2

{

ds1(
~k1), d†s2

(~k2)
}

vs2B(k2)vs1 A(k1) eik1x1 e−ik2x2

=
∫

d3k1

(2π)32ωk1

∑
s

vsA(k1)vsB(k1) eik1(x1−x2)

=
∫

d3k1

(2π)32ωk1

(/k1 −m)AB eik1(x1−x2)

(4.113)
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Inserting the two commutators in the definition of the propagator we obtain

iSF(x) = θ(t) e−iωkt
∫

d3k

(2π)32ωk
(/k + m) ei~k·~x −θ(−t) eiωkt

∫

d3k

(2π)32ωk
(/k−m) e−i~k·~x

=
∫

d3k

(2π)32ωk
ei~k·~x

[

θ(t) (ωkγ
0 −~k · ~γ + m) e−iωkt

+θ(−t) (−ωkγ
0 −~k · ~γ + m) eiωkt

]

.

(4.114)

Again, the propagator can be written as before in a more compact way

iSF(x) =
∫

d4k

(2π)4

i (/k + m)e−ikx

(

k2 −m2 + iǫ
) , (4.115)

and its Fourier transform is given by

iSF(k) =
i (/k + m)

(

k2 −m2 + iǫ
) . (4.116)

Again, we stress that in these formulas k0 is not fixed to be equal to ωk, as was implicitly

assumed in the previous equations. With Cauchy theorem it is easy to repeat the proof

that the above expressions lead to the same result as Eq. (4.114). Note that since the

fermion propagator depends on k and not only on k2, it is relevant to remember that k is

the momentum flowing from x2 to x1, i.e., it has to follow the direction of the fermion line

(in the complex scalar field case, we could have oriented the momentum opposite to the

arrow with no consequence).

4.5.3 The photon propagator

The definition is the same as for the scalar propagator, apart from the presence of the

Lorentz indices on the fields

iDµν
F (x1 − x2) = θ(t1 − t2)

[

A+µ(x1), A−ν(x2)
]

+θ(t2 − t1)
[

A+ν(x2), A−µ(x1)
]

. (4.117)

The general expression for the field operators is

Aµ+(x) =
3

∑
λ=0

∫

d3k

(2π)32ωk
ǫ
µ
λ(
~k)aλ(~k)e

−ikx, (4.118)

Aµ−(x) =
3

∑
λ=0

∫

d3k

(2π)32ωk
ǫ
µ∗
λ (~k)a†λ(~k)e

ikx. (4.119)
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We can then compute the commutator with steps similar to the previous cases. The

only difference is the need to take care of the vector part of the field represented by the

polarization vectors ǫ and make use of Eq. (3.259):

[

A+µ(x1), A−ν(x2)
]

= ∑
λ1 ,λ2

∫

d3k1

(2π)32ωk1

∫

d3k2

(2π)32ωk2

[

aλ1
(~k1), a†λ2

(~k2)
]

ǫ
µ
λ1
(k1)ǫ

ν∗
λ2
(k2) e−ik1x1 eik2x2

= ∑
λ1 ,λ2

∫

d3k1

(2π)32ωk1

∫

d3k2

(2π)32ωk2

(−gλ1λ2
)(2π)32ωk2

δ(~k1 −~k2) ǫ
µ
λ1
(k1)ǫ

ν∗
λ2
(k2) e−ik1x1 eik2x2

= −
∫

d3k1

(2π)32ωk1

∑
λ1 ,λ2

gλ1λ2
ǫ
µ
λ1
(k1)ǫ

ν∗
λ2
(k1) e−ik1(x1−x2)

= −gµν
∫

d3k1

(2π)32ωk1

e−ik1(x1−x2).

(4.120)

The only difference with respect to the scalar propagator is the presence of the extra

−gµν (and the absence of a mass). Therefore, we can summarize the result of the propa-

gator as

iDµν
F (x) =

∫

d4k

(2π)4

−igµν e−ikx

(

k2 + iǫ
) , (4.121)

and its Fourier transform is given by

iDµν
F (k) =

−igµν
(

k2 + iǫ
) . (4.122)

It is important to stress at this point that the above result is valid only in the Feyn-

man gauge (i.e., Lorenz gauge with ξ = 1). What happens in other gauges? Let us first

of all remind ourselves that the photon propagator is a Green’s function. The photon

propagator in Feynman gauge solves the equation (see Eq. (3.248))

∂ρ∂ρDµν
F (x) = −gµνδ4(x). (4.123)

More generally, in Lorenz gauges with generic ξ , the photon propagator turns out to be

iDµν
F (k)|LG =

i
(

k2 + iǫ
)

(

− gµν + (1−ξ)kµkν

k2

)

. (4.124)

and solves the equation

[

∂ρ∂ρδµσ − (1− 1/ξ)∂µ∂σ

]

DσνF (x) = −gµνδ4(x). (4.125)
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To give another example, in axial gauges the propagator turns out to be (see next

Section)

iDµν
F (k)|AG =

i
(

k2 + iǫ
)

(

− gµν +
kµ nν + kν nµ

k · n − kµ kν

(k · n)2
n2

)

. (4.126)

Without proving it, we stress that the differences between the various gauges should

always cancel in physical results (the proof relies on Ward’s identity, cf., e.g., Peskin–

Schroeder, Sec. 7.4). We will check this statment in some examples in the next sections.

4.6 Photon propagator in axial and Coulomb gauge [op-

tional]

The expression of the photon propagator in axial gauge can be obtained starting from a

Lagrangian with the gauge-fixing term

Lg.f. = −
1

2ξ
(nµAµ)2 (4.127)

The Green’s function of the resulting equations of motion is

iDµν
F (k)|AG1 =

i
(

k2 + iǫ
)

(

− gµν +
kµ nν + kν nµ

k · n − kµ kν

(k · n)2
(n2 −ξk2)

)

. (4.128)

The standard choice is ξ = 0, corresponding to the result in Eq. (4.126).

Alternatively, we can check what happens to the expression of the polarization sum

in the last steps of Eq. (4.120). Instead of using Eq. (3.259), we have to use Eq. (3.261), and

we obtain again the result of Eq. (4.126).

The expression of the polarization sum was obtained by setting k2 = 0. However, the

covariant expression of the propagator implies that the photon is not necessarily on-shell,

i.e., k2 6= 0. Therefore, in the axial-gauge case, to be complete we should use Eq. (3.260),

which includes four terms.

iDµν
F (k)|AG2 =

i
(

k2 + iǫ
)

(

− gµν +
k · n

(k · n)2 − k2

(

kµ nν + kν nµ
)

− n2

(k · n)2 − k2
kµ kν − k2

(k · n)2 − k2
nµ nν

)

.

(4.129)

It is possible to derive this result as the Green’s function of the equations of motion for the

free field, but in this case we need to add two gauge fixing terms (nµAµ)2 and (∂µAµ)2.

It turns out that the last term in Eq.(4.129) can be omitted becasue it is cancelled by

an analogous term appearing in the interaction Hamiltonian when adopting this gauge

choice. This situation is similar in Coulomb gauge and this is the case more frequently

discussed in textbooks. Let us see some more details.
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The “standard” form of the Coulomb gauge propagator is

iDµν
F (k)|CG =

i
(

k2 + iǫ
)

(

− gµν +
k0
(

kµ nν + kν nµ
)

|~k|2
− kµ kν

|~k|2

)

. (4.130)

As for the axial gauge, we could obtain the propagator in Coulomb gauge as a Green’s

function. In this case we would need to include in the Lagrangian a gauge-fixing term of

the type

Lg.f. = −
1

2ξ
(~∇ · ~A)2 (4.131)

from which we would obtain

iDµν
F (k)|CG1 =

i
(

k2 + iǫ
)

(

− gµν +
k0
(

kµ nν + kν nµ
)

|~k|2
− kµ kν

|~k|2
− ξk2kµ kν

|~k|4

)

. (4.132)

The usual choice is ξ = 0, corresponding to Eq. (4.130).

Alternatively, we can use the properties of polarization vectors. In Coulomb gauge, we

have effectively two transverse degrees of freedom only, orthogonal to k and to the pure

time direction, which corresponds to using Eq. (3.260) with n = (1, 0, 0, 0). In practice,

for the polarization sum in Coulomb gauge we obtain

iDµν
F (k)|CG2 =

i
(

k2 + iǫ
)

(

− gµν +
k0
(

kµ nν + kν nµ
)

|~k|2
− kµ kν

|~k|2
− k2 nµ nν

|~k|2

)

. (4.133)

which corresponds to Eq. (4.130) only if we impose k2 = 0, eliminating the last term.

Let us devote some attention to the very last term and add it to Eq. (4.121), we obtain

an extra term
∫

d4k

(2π)4

i��k2 nµ nν e−ikx

✘✘✘✘✘(

k2 + iǫ
) . (4.134)

The integration over k0 in this case gives a δ(t), which means that this is an “instantaneous

term”, also called a Coulomb term.

It looks like we have a term that potentially spoils the agreement with the Feynman-

gauge calculation. However, this problem is resolved when we look at the form of the in-

teraction Hamiltonian in Coulomb gauge, which contains the expression ψ(x) /A(x)ψ(x).

In Coulomb gauge, the A0 component of the field is treated as an auxiliary field, has to

fulfill Poisson’s equation and is determined by the charge distribution at time t, i.e. (using

Eq. (4.110) and the charge density associated to the Dirac field ρ(x′) = −eψ(x′)γ0ψ(x′))

A0(x) = Φ(x) = −e
∫

d3x′
ψ(x′)γ0ψ(x′)

4π |~x−~x′| = −e
∫

d4x′
ψ(x′)γ0ψ(x′)

4π |~x−~x′| δ(t− t′). (4.135)

The contribution to the scattering matrix will then become

−e
∫

d4x
[

ψ(x)γ0ψ(x)A0(x)
]

= e2
∫

d4x
∫

d4x′ψ(x)γ0ψ(x)
ψ(x′)γ0ψ(x′)

4π |~x−~x′| δ(t− t′)

(4.136)
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This is the form of the Coulomb interaction (also sometimes called “contact interaction”)

which is an instantaneous interaction, in the sense that a change in the charge density

distribution at ~x′ would be immediately felt by a charge at ~x.

Coulomb’s interaction is part of the first-order term in Dyson’s expansion of the scat-

tering matrix, but it is of order e2 and thus it should be summed to the second-order contri-

butions to S. It turns out that from the second-order contribution to S, the instantaneous

term in the photon propagator exactly cancels the contribution from the instantaneous

Coulomb interaction. In the words of Weinberg ( [33], p. 355): “We se that the apparent

violation of Lorentz invariance in the instantaneous Coulomb interaction is cancelled by

another apparent violation of Lorentz invariance, that the fields Aµ are not four-vectors,

and therefore have a non-covariant propagator.”

From a practical point of view, it means that in non-covariant gauges we can avoid

including the last term of the propagator, proportional to k2, even if the photon is off-

shell.

Where does the Coulomb interaction ends up, then? Does it disappear? No, because it

is a physical effect that must be already included in the−gµν part of the propagator, which

is the same in all gauges. In fact, if you look at the nonrelativistic limit of the Feynman

gauge expression (following, e.g., p. 125 of Peskin–Schroeder), you recover Coulomb’s

potential.

4.7 Second-order contributions: some examples

4.7.1 “ABC” theory

Let us start from the “ABC” theory. The second-order expansion of the scattering matrix

is

S(2) = −λ
2

2!

∫

d4x1d4x2 T

[

N
[

φA(x1)φB(x1)φC(x1)
]

N
[

φA(x2)φB(x2)φC(x2)
]

]

. (4.137)

Applying Wick’s theorem we can obtain in principle one term without contractions, 9

terms with one contraction, 9 terms with two contractions, one term with three contrac-

tions. However, only contractions between the same fields are nonzero, so that we obtain

only 8 terms: one term without contractions, 3 terms with one contraction, 3 terms with

two contractions, one term with three contractions, i.e., 3

S
(2)
(a)

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

, (4.138)

S
(2)
(b)

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

, (4.139)

3As a shorthand, we use x1 and x2 as subscripts to refer to terms that are all evaluated at x1 or x2.



4.7 Second-order contributions: some examples 127

S
(2)
(c)

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

, (4.140)

S
(2)
(d)

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

, (4.141)

S
(2)
(e)

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

, (4.142)

S
(2)
( f )

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

, (4.143)

S
(2)
(g)

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

, (4.144)

S
(2)
(h)

= −λ
2

2!

∫

d4x1d4x2 N
[

(

φAφBφC

)

x1

(

φAφBφC

)

x2

]

. (4.145)

We will discuss all the possibilities only in the section dedicated to QED. For the moment,

let us focus on a specific choice of initial and final states. For instance, let us consider two

A and B fields in the initial and final states, i.e.,

∣

∣i
〉

= a†A(ki)a†B(pi)
∣

∣0
〉

,
〈

f
∣

∣ =
〈

0
∣

∣aB(p f )aA(k f ). (4.146)

We need to check if there is a possible term in the above expressions that can connect these

states. It needs to contain two uncontracted A and two uncontracted B fields, therefore we

need contribution S
(2)
(d)

. In particular, we need one absorption and one creation operator

from the A fields and similarly for the B fields. There are four possible contributions,

corresponding to

(

φ+
Aφ
−
BφC

)

x1

(

φ−Aφ
+
BφC

)

x2

(

φ−Aφ
+
BφC

)

x1

(

φ+
Aφ
−
BφC

)

x2
(4.147)

(

φ+
Aφ

+
BφC

)

x1

(

φ−Aφ
−
BφC

)

x2

(

φ−Aφ
−
BφC

)

x1

(

φ+
Aφ

+
BφC

)

x2
(4.148)

The two terms in the first line are identical, since if we exchange the integration vari-

ables x1 and x2 we obtain the same expression. It is sufficient to consider only one of

them, multiplying it by a factor 2 that cancels the 2! in the denominator. These terms

correspond to diagram (ab1) in Fig. 4.8, since we have one creation and one absorption

operator at each vertex. Similar considerations hold for the two terms in the second line:

they are identical, leading to a cancellation of the 2! factor, and they correspond to dia-

gram (ab2) in Fig. 4.8, since they contain two creation and two absorption operators at

each vertex.

This is a case where there are two amplitudes contributing to the same process, with

the same initial and final states. It is important to determine correctly the relative sign

between these two amplitudes: in this case, only scalar fields are involved and no sign

change occurs if the sequence of operators is modified due to normal ordering.
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Figure 4.8: Feynman diagrams contributing to AB→ AB scattering.

4.7.2 Electron-muon scattering

Before considering all processes occurring in QED with electrons and positrons, we first

consider the interaction between an electron and a muon. Muons can be considered as

identical to electrons, apart from having a higher mass (mm = 106 MeV, me = 0.511

MeV). The Lagrangian is obtained just by duplicating the QED Lagrangian, except for

the free photon field part, i.e.,

Le−m = ψe

(

i/∂−me

)

ψe +ψm

(

i/∂−mm

)

ψm −
1

4
FµνFµν + eψeγ

µψe Aµ + eψmγ
µψm Aµ .

(4.149)

The second-order contributions to the scattering matrix are

S(2) = − e2

2!

∫

d4x1d4x2 T

[

N
[

ψe(x1) /A(x1)ψe(x1) +ψm(x1) /A(x1)ψm(x1)
]

N
[

ψe(x2) /A(x1)ψe(x2) +ψm(x2) /A(x1)ψm(x2)
]

]

.

(4.150)

The Lagrangian is obviously more complicated than including only electrons. However,

it allows us to study some simpler cases if specific initial and final states are chosen, as it

will be clear in the following.

Let us consider the case of a scattering of an electron and a muon. The initial and final

states are

∣

∣i
〉

= c†e,si
(ki)c

†
m,ri

(pi)
∣

∣0
〉

,
〈

f
∣

∣ =
〈

0
∣

∣cm,r f
(p f )ce,s f

(k f ). (4.151)

We need to have one absorption and one creation operator for the electron and the same

for the muon. Therefore, we need to select the following term in the Wick expansion of

the scattering matrix

S
(2)
(eµ)

= − e2

2!

∫

d4x1d4x2 N
[

(

ψeγ
αAαψe

)

x1

(

ψmγ
βAβψm

)

x2

+
(

ψmγ
αAαψm

)

x1

(

ψeγ
βAβψe

)

x2

]

(4.152)
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The second term is identical to the first and can be combined with it to get rid of the factor

2 in the denominator.

Considering only the terms that can give a nonzero contribution and introducing the

photon propagator we obtain

S
(2)
(eµ)

= −e2
∫

d4x1d4x2

(

ψ
−
e γ

αψ+
e

)

x1
iDF,αβ(x1 − x2)

(

ψ
−
mγ

βψ+
m

)

x2
. (4.153)

e−(si)

ki

e−(s f )

k f
α

q

µ−(ri)
pi

µ−(r f )
p f

β

Figure 4.9: Feynman diagram contributing to electron-muon scattering.

Next, we have to insert the expressions of the field operators.

ψ
−
e (x1) = ∑

s′

∫

d3k′

(2π)32ωk′
c†e,s′(

~k′)ue,s′(~k
′)eik′x1 electron creation,

ψ+
e (x) = ∑

s′′

∫

d3k′′

(2π)32ωk′′
ce,s′′(~k

′′)ue,s′′(~k
′′)e−ik′′x1 electron absorption,

ψ
−
m(x1) = ∑

r′

∫

d3 p′

(2π)32ωp′
c†m,r′(~p

′)um,r′(~p
′)eip′x2 muon creation,

ψ+
m(x) = ∑

r′′

∫

d3 p′′

(2π)32ωp′′
cm,r′′(~p

′)um,r′′(~p
′′)e−ip′′x2 muon absorption.

As a first step, let us focus on the involved creation and absorption operators. Our

scattering matrix contains this expression

〈

0
∣

∣cm,r f
(p f )ce,s f

(k f )c
†
e,s′(k

′)ce,s′′(k
′′)c†m,r′(p′)cm,r′′(p′′)c†e,si

(ki)c
†
m,ri

(pi)
∣

∣0
〉

=
〈

0
∣

∣ce,s f
(k f )c

†
e,s′(k

′)ce,s′′(k
′′)c†e,si

(ki)cm,r f
(p f )c

†
m,r′(p′)cm,r′′(p′′)c†m,ri

(pi)
∣

∣0
〉

=
〈

0
∣

∣

[

ce,s f
(k f ), c†e,s′(k

′)
][

ce,s′′(k
′′), c†e,si

(ki)
][

cm,r f
(p f ), c†m,r′(p′)

][

cm,r′′(p′′), c†m,ri
(pi)

]

∣

∣0
〉

= (2π)32ωk f
δs f s′δ(~k f −~k′) (2π)32ωki

δsis′′δ(
~ki −~k′′)

× (2π)32ωp f
δr f r′δ(~p f −~p′) (2π)32ωpi

δr f r′′δ(~pi −~p′′)〈0|0〉
(4.154)

where we just used anticommutation rules for the ladder operators. Once we have sim-

plified this part of the scattering matrix, we can perform the sum of over the spins and
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integrals over the momenta using the deltas and obtain

〈

f
∣

∣S
(2)
(eµ)

∣

∣i
〉

= −e2
∫

d4x1d4x2 ue,s f
(~k f )e

ik f x1γαue,si
(~ki)e

−ikix1 iDF,αβ(x1 − x2)

um,r f
(~p f )e

ip f x2γβum,ri
(~pi)e

−ipix2

(4.155)

We now replace the expression of the photon propagator and perform the integrations

over x1 and x2

〈

f
∣

∣S
(2)
(eµ)

∣

∣i
〉

= −e2
∫

d4x1d4x2 ue,s f
(~k f )e

ik f x1γαue,si
(~ki)e

−ikix1

×
∫

d4q

(2π)4

−igαβ e−iq(x1−x2)

(

q2 + iǫ
) um,r f

(~p f )e
ip f x2γβum,ri

(~pi)e
−ipix2

= −e2
∫

d4q

(2π)4

∫

d4x1d4x2 e−i(ki−k f +q)x1 e−i(pi−p f−q)x2

× ue,s f
(~k f )γ

αue,si
(~ki)

−igαβ
(

q2 + iǫ
) um,r f

(~p f )γ
βum,ri

(~pi)

= −e2
∫

d4q

(2π)4
(2π)4δ(4)(ki − k f + q)(2π)4δ(4)(pi − p f − q)

× ue,s f
(~k f )γ

αue,si
(~ki)

−igαβ
(

q2 + iǫ
) um,r f

(~p f )γ
βum,ri

(~pi)

= (2π)4δ(4)(ki + pi − k f − p f )

× (−e2) ue,s f
(~k f )γ

αue,si
(~ki)

−igαβ
(

q2 + iǫ
)

∣

∣

∣

∣

q=pi−p f

um,r f
(~p f )γ

βum,ri
(~pi).

(4.156)

The calculation leads to a simple formula for the scattering matrix, where we can again

find conservation of total four-momentum, but also conservation of four momentum at

each vertex of the Feynman diagram.

The Feynman amplitude is

iM(2)
(eµ)

= ue,s f
(~k f )(−ieγα)ue,si

(~ki)
−igαβ
(

q2 + iǫ
)

∣

∣

∣

∣

q=pi−p f

um,r f
(~p f )(−ieγβ)um,ri

(~pi). (4.157)

On top of the Feynman rules for the incoming and outgoing fermions, which we found

already at order e, we can now add Feynman rule for photon propagators

Photon propagator (Feynman gauge): µ ν→
q

=
−igµν
q2 + iǫ

(4.158)

At this point, we should worry about gauge choices and make an important remark:

physical results cannot depend on the choice of gauge. The photon propagator depends
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on gauge. However, we can explicitly check that the additional pieces appearing in

Eq. (4.124) or Eq. (4.126) give no contribution. For instance, let us replace gαβ with qαnβ.

In the first part of the Feynman amplitude we would obtain

ue,s f
(~k f )γ

αue,si
(~ki)qα

∣

∣

q=k f−ki
= ue,s f

(~k f )(/k f − /ki)ue,si
(ki) = 0. (4.159)

The last equality holds due to Dirac’s equation for the spinors

(/ki −me)u(ki) = 0, u(k f )(/k f −me) = 0. (4.160)

In conclusion, even if the photon propagator changes in different gauges, the scattering

amplitude does not change.

4.7.3 Yukawa interaction [optional]

We now use the Yukawa Lagrangian to describe the interaction between protons. At

second order we have

S(2) = −g2

2!

∫

d4x1d4x2 T

[

N
[

ψ(x1)ψ(x1)φ(x1)
]

N
[

ψ(x2)ψ(x2)φ(x2)
]

]

. (4.161)

Suppose we focus on the scattering between a proton and an antiproton, by selecting the

following initial and final states
∣

∣i
〉

= d†si
(ki)c

†
ri
(pi)

∣

∣0
〉

,
〈

f
∣

∣ =
〈

0
∣

∣cr f
(p f )ds f

(k f ). (4.162)

Without repeating all considerations, we can deduce that the relevant parts of the scatter-

ing matrix will be

S(2) = −g2
∫

d4x1d4x2 N
[

(

ψ
+
ψ−φ

)

x1

(

ψ
−
ψ+φ

)

x2
+
(

ψ
+
ψ+φ

)

x1

(

ψ
−
ψ−φ

)

x2

]

, (4.163)

where we have already put together identical terms and simplified the 2! in the denomi-

nator.

In this case, since we are dealing with fermion fields and there are two contributions

to the scattering process, we need to determine what is their relative sign. Focusing only

on the ordering of the ladder operators, we have N[dd†c†c] = d†c†dc for the first term and

N[dcc†d†] = −d†c†dc, i.e., the two scattering amplitudes enter with the opposite sign.

The scattering amplitudes become

iM(Y1) = −g2us f
(~k f )usi

(~ki)
i

(

q2 −M2 + iǫ
)

∣

∣

∣

∣

q=pi−p f

vri
(~pi)vr f

(~p f ), (4.164)

iM(Y2) = +g2us f
(~k f )vr f

(~p f )
i

(

q2 −M2 + iǫ
)

∣

∣

∣

∣

q=pi+ki

vri
(~pi)usi

(~ki), (4.165)

where M is the mass of the scalar field. Note that the relative sign between the two

amplitudes can be determined also looking at their expressions: their are connected by

a simple exchange of two spinors (u and v), which keeps memory of the way ladder

operators were ordered in the interaction Hamiltonian.
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Figure 4.10: Feynman diagrams contributing to pp̄ scattering in Yukawa theory.

4.7.4 Nonrelativistic approximation [optional]

It is instructive to study what happens if we apply a nonrelativistic approximation to

the scattering amplitudes of the electron-muon and of the proton-antiproton scattering

obtained in the previous sections in the nonrelativistic approximation. This is discusse,

e.g., in Peskin-Schroeder, Ch. 4 and in Mandl-Shaw, Sec. 8.7.

Let us suppose that one of the particle scatters off a static potential produced by the

other particle, which we consider the target. In the nonrelativistic limit, we can do these

approximations at the target level

pi = (m,~pi), p f = (m,~p f ), (4.166)

and

(pi − p f )
2 ≈ −|~pi −~p f |2 = −|~k f −~ki|2. (4.167)

For what concerns spinors, if we use the standard representation we can approximate

them as

u1(~p) ≈ u1(0) =
√

2m











1

0

0

0











, u2(~p) ≈ u2(0) =
√

2m











0

1

0

0











, (4.168)

v1(~p) ≈ v1(0) = −
√

2m











0

0

0

1











, v2(~p) ≈ v2(0) =
√

2m











0

0

1

0











. (4.169)

Let us consider the electron scattering off an approximately static muon target. The

relevant part of the interaction in the nonrelativistic limit comes from β = 0 in Eq. (4.157)

(only ū(0)γ0u(0) survives), which implies in its turnα = 0. Then we get

iM(eµ) ≈
−ie2

|~k f −~ki|2
ue,s f

(~k f )γ
0ue,si

(~ki)um,r f
(0)γ0um,ri

(0). (4.170)
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The scattering off an external EM field can be described by the following Feynman

amplitude (cf. Eq. (8.88) of Mandl-Shaw)

iM =
ie

2m
ue,s f

(~k f ) /Aext(~k f −~ki) ue,si
(~ki). (4.171)

In our case, the external EM field is the one generated by the nonrelativistic approxima-

tion of the interaction with the muon target, wich turn out to be, by comparison with

Eq. (4.170)

Aρext(~q) =

(

− e

|~q|2 , 0, 0, 0

)

. (4.172)

This corresponds to the electrostatic potential generated by a negative charge. Its

Fourier transform is

Φ(r) = − e

r
, (4.173)

which is precisely the Coulomb potential of a negative charge (in razionalized Gaussian

units).

What happens if we consider the scattering off an antimuon, instead of a muon? we

will have a sequence of ladder operators N[c†ecedmd†m] = −c†eced†mdm, which introduces a

minus sign with respect to the muon case. The rest remains exactly the same and the cor-

responding potential becomes that of a positive charge. In other words, the change of sign

between a particle-particle or particle-antiparticle scattering (from repulsive to attractive)

is due to normal ordering. The change of sign is typical of interactions mediated by a

vector particle (the photon).

Let us analyze now the Yukawa case. Diagram (Y2), Eq. (4.165), will not contribute,

because spinor products ūv and v̄u are suppressed. This means that particle-antiparticle

annihilation is not possible in the nonrelativistic limit. Diagram (Y1), Eq. (4.164), gives

iM(Y1) ≈
ig2

|~k f −~ki|2 + M2
us f

(~k f )usi
(~ki) vri

(0)vr f
(0) (4.174)

In this case, the scattering off a static external scalar field would just be

iM =
ig

2m
ue,s f

(~k f ) ue,si
(~ki)φext(~k f −~ki), (4.175)

which leads to the identification

φext(~q) =
g

|~q|2 + M2
(4.176)

and a corresponding potential

V(r) ∝ g

r
e−Mr (4.177)

which is indeed the short-ranged Yukawa potential. Notice that the potential is positive.

The particle-antiparticle interaction is attractive.
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What happens if we scatter a proton off another proton, instead of an antiproton?

First, we will have a sequence of ladder operators N[c†cc†c] = −c†c†cc, which intro-

duces a minus sign with respect to the previous case. This is similar to the electron-muon

case. However, we have a product uu instead of vv, which introduces another minus

sign. Overall, the sign of the scattering amplitude does not change from proton-proton

to proton-antiproton and the potential is attractive in both cases. This is typical of an

interaction mediated by a scalar particle.

4.8 Second-order contribution in QED: general case

We now proceed to considering the second-order terms in the expansion of the scattering

matrix for QED:

S(2) = − e2

2!

∫

d4x1d4x2 T

[

N
[

ψ(x1) /A(x1)ψ(x1)
]

N
[

ψ(x2) /A(x2)ψ(x2)
]

]

. (4.178)

Application of Wick’s theorem leads to six possible independent terms. Remember

that we should not take into account equal-time contractions and that the nonzero con-

tractions are only the ones between ψψ, ψψ, and AA).

S
(2)
(a)

= − e2

2!

∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

, (4.179)

S
(2)
(b)

= − e2

2!

∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2
+
(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

,

(4.180)

S
(2)
(c)

= − e2

2!

∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

(4.181)

S
(2)
(d)

= − e2

2!

∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2
+
(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

,

(4.182)

S
(2)
(e)

= − e2

2!

∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

, (4.183)

S
(2)
( f )

= − e2

2!

∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

, (4.184)

S(a) is easy to analyze because it consists of two independent terms equal to the first-

order one. They correspond to the combination of two of the processes described in the

previous section and not physically possible.
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Vacuum bubbles

S( f ) is also easy to analyze: it contains three propagators and nothing else, therefore it

describes no transition and is also called a vacuum diagram or vacuum bubble. This

kind of diagrams do not give a contribution to scattering processes (it can be combined

with any diagram where particles go through unscattered) and should be omitted in the

calculation of the scattering matrix. Also at higher orders, it turns out that these kinds of

contributions (called “disconnected diagrams”) can be omitted in the calculation of the

scattering matrix.

Figure 4.11: Graphical representation of the operator S
(2)
( f )

, the so-called vacuum bubble.

Self-energies

S(e) contains two uncontracted photon operators. Note that

N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

= ψA(x1)ψB(x2)ψC(x1)ψD(x2)γ
α
ACγ

β
DBN

[

Aα(x1)Aβ(x2)
]

= (−1)ψB(x2)ψA(x1)ψC(x1)ψD(x2)γ
α
ACγ

β
DBN

[

Aα(x1)Aβ(x2)
]

= (−1)iSF,BA(x2 − x1)γ
α
ACiSF,CD(x1 − x2)γ

β
DBN

[

Aα(x1)Aβ(x2)
]

= (−1)Tr
[

iSF(x2 − x1)γ
αiSF(x1 − x2)γ

β
]

N
[

Aα(x1)Aβ(x2)
]

.

(4.185)

We can choose + or − components of the two A fields: there are four possible combina-

tions (see Fig. 4.12). The two fermion propagators form a “loop,” and this is in fact called

a loop diagram (vacuum bubbles are also loop diagrams). The occurrence of the − sign in

Eq. (4.185) is typical of fermion loops. Of the four combinations in Fig. 4.12, only two are

physical, in the sense that they can be consistent with momentum conservation. The two

diagrams are actually equivalent, as can be seen upon exchange of integration variables,

and contribute to the so-called photon self-energy. At the order we are considering, the

photon self-energy does not contribute to a scattering process. At higher orders, how-

ever, it must be taken into account and induces a modification of the properties of the

photon itself. The momentum integrals included in the fermion propagators generate

divergences that have to be dealt with using renormalization.

S(d) contains a fermion and a photon propagator, leaving two fermion fields to act on

the initial and final states. First of all, we check that the two different terms in the expres-

sion of S(d) are the same. In the second term, we can permute the two blocks (ψA /AABψB)
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Figure 4.12: Graphical representation of the various terms contained in the operator S
(2)
(e)

. The first two

terms are equivalent and represent the photon self-energy, which however does not give a contribution to a

scattering process at the order we are considering. The last two contributions are unphysical.

Figure 4.13: Graphical representation of the various terms contained in the operator S
(2)
(d)

. The first term is

the electron self-energy diagram, the second is the positron self-energy diagram. They do not give a contri-

bution to a scattering process at the order we are considering. The last two contributions are unphysical.

(no sign change is required since the block contains a pair of fermion fields and no prob-

lem arises from the Dirac structure); then we exchange the integration variable x1 ↔ x2,

to obtain the same thing as the first term. Therefore, the S(d) term can be rewritten in a

shorter way (note that the disappearance of the 2! factor in the denominator)

S
(2)
(d)

= −e2
∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

, (4.186)

Similar to before, there are in principle four possibilities depending on the choice of +

and − components of the uncontracted fermion fields. They are illustrated in Fig. 4.13

and are again examples of loop diagrams. Only two of them are physical: a particle

can be absorbed and then created, in which case we are considering a contribution to

a process where there is a particle in the initial and final state, or the same can happen

with an antiparticle. These processes correspond to the so-called electron and positron

self-energy diagrams.

Two-to-two processes

S(b) contains a fermion propagator, two fermion fields and two photon fields. As for S(d),

the two different terms are the same and we can write simply

S
(2)
(b)

= −e2
∫

d4x1d4x2 N
[

(

ψγαAαψ
)

x1

(

ψγβAβψ
)

x2

]

, (4.187)

There are in principle 16 different combinations of + and − components of the two

fermion fields and two photon fields. Many of them are nonphysical: for instance, a

combination with all + components means that we are absorbing two fermions and two
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photons and creating nothing. The physical combinations (i.e., the ones that can be con-

sistent with momentum conservation) contain two particles in the initial state and two in

the final state and are only six (corresponding to four different processes), i.e.,

S
(2)
(b1)

= −e2
∫

d4x1d4x2 ψ
−
A(x1)γ

α
AC A−α (x1)iSF,CD(x1 − x2)γ

β
DB A+

β (x2)ψ
+
B (x2)

= −e2
∫

d4x1d4x2

(

γαiSF(x1 − x2)γ
β
)

AB
ψ
−
A(x1)A−α (x1)A+

β (x2)ψ
+
B (x2),

(4.188)

S
(2)
(b2)

= −e2
∫

d4x1d4x2

(

γαiSF(x1 − x2)γ
β
)

AB
ψ
−
A(x1)A−β (x2)A+

α (x1)ψ
+
B (x2), (4.189)

both corresponding to the process γe− → γe− (Compton scattering by electrons)

S
(2)
(b3)

= +e2
∫

d4x1d4x2

(

γαiSF(x1 − x2)γ
β
)

AB
ψ−B (x2)A−α (x1)A+

β (x2)ψ
+
A(x1), (4.190)

S
(2)
(b4)

= +e2
∫

d4x1d4x2

(

γαiSF(x1 − x2)γ
β
)

AB
ψ−B (x2)A−β (x2)A+

α (x1)ψ
+
A(x1), (4.191)

both corresponding to the process γe+ → γe+ (Compton scattering by positrons). Note

the change of sign due to the fact that we inverted two anticommuting fermion fields.

S
(2)
(b5)

= −e2
∫

d4x1d4x2

(

γαiSF(x1 − x2)γ
β
)

AB
ψ
−
A(x1)ψ

−
B (x2)A+

β (x2)A+
α (x1), (4.192)

corresponding to the process γγ → e+e− (pair creation)

S
(2)
(b6)

= −e2
∫

d4x1d4x2

(

γαiSF(x1 − x2)γ
β
)

AB
A−β (x2)A−α (x1)ψ

+
A(x1)ψ

+
B (x2), (4.193)

corresponding to the process e+e− → γγ (pair annihilation).

S(c) contains a photon propagator and four fermion fields acting on the initial and final

states. Of all the possible combinations of creation and absorption operators, the only

ones that are physical are the combinations describing e−e+ → e+e− (Bhabha scattering),

e−e− → e−e− or e+e+ → e+e+ (Møller scattering).

S
(2)
(c1)

= − e2

2!

∫

d4x1d4x2

(

γαABiDF,αβ(x1 − x2)γ
β
CD

)

ψ
−
A(x1)ψ

−
B (x1)ψ

+
C (x2)ψ

+
D(x2), (4.194)

S
(2)
(c2)

= − e2

2!

∫

d4x1d4x2

(

γαABiDF,αβ(x1 − x2)γ
β
CD

)

ψ
−
C (x2)ψ

−
D(x2)ψ

+
A(x1)ψ

+
B (x1), (4.195)

S
(2)
(c3)

= +
e2

2!

∫

d4x1d4x2

(

γαABiDF,αβ(x1 − x2)γ
β
CD

)

ψ
−
A(x1)ψ

−
D(x2)ψ

+
C (x2)ψ

+
B (x1), (4.196)

S
(2)
(c4)

= +
e2

2!

∫

d4x1d4x2

(

γαABiDF,αβ(x1 − x2)γ
β
CD

)

ψ
−
C (x2)ψ

−
B (x1)ψ

+
A(x1)ψ

+
D(x2), (4.197)



138 4. Interacting quantum fields

β α β α

(b1) (b2)

α β α β

(b3) (b4)

β

α

β

α

(b5) (b6)

Figure 4.14: Graphical representations of the terms contained in S
(2)
(b)

. First row: Compton scattering by

electrons; second row: Compton scattering by positron; last row: γγ → e+e− and e+e− → γγ.
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β α α β

(c1) (c2)

α

β

α

β

(c3) (c4)

α

β

α

β

(c5) (c6)

Figure 4.15: Graphical representations of the terms contained in S
(2)
(c)

. First two rows: e+e− → e+e−

(Bhabha scattering); the two contributions in each row are equivalent. Last row: Møller scattering by

electrons or positrons.

The above expressions all contribute to the process e+e− → e+e− (Bhabha scattering).

Note the sign change of the last two contributions, c3 and c4. Permuting the ψγψ blocks

and interchanging the integration variables x1 ↔ x2 leads to the conclusion that the first

two expressions (c1 and c2) and the last two expressions (c3 and c4) are the same (which

allows us to consider only one of them and remove the 2!).

S
(2)
(c5)

= − e2

2!

∫

d4x1d4x2

(

γαABiDF,αβ(x1 − x2)γ
β
CD

)

ψ
−
A(x1)ψ

−
C (x2)ψ

+
B (x1)ψ

+
D(x2), (4.198)

corresponding to the process e−e− → e−e− (electron Møller scattering),

S
(2)
(c6)

= − e2

2!

∫

d4x1d4x2

(

γαABiDF,αβ(x1 − x2)γ
β
CD

)

ψ−B (x1)ψ
−
D(x2)ψ

+
A(x1)ψ

+
C (x2), (4.199)

corresponding to the process e+e+ → e+e+ (positron Møller scattering).

The different contributions to S
(2)
(b)

and S
(2)
(c)

are all examples of tree-level diagrams, e.g.,

diagrams with no loops.



140 4. Interacting quantum fields

e−(si)

ki

γ(λi)

qi

µ

e−(s f )

k f

γ(λ f )

q f

ν

e−(si)

ki

γ(λi)

qi

µ

e−(s f )

k f

γ(λ f )

q f

ν

(b1) (b2)

Figure 4.16: Feynman diagrams contributing to Compton scattering.

4.8.1 Example: Compton scattering

We now have to see what happens when applying each term of the S(2) scattering matrix

to the appropriate initial and final states. Let us consider the case of electron Compton

scattering. The initial and final states are in this case

∣

∣i
〉

= a†λi
(qi)c

†
si
(ki)

∣

∣0
〉

,
〈

f
∣

∣ =
〈

0
∣

∣cs f
(k f )aλ f

(q f ). (4.200)

To compute the result of acting with the S
(2)
(b1)

matrix we need to insert the expressions of

the fields and of the propagator. Without repeating all the steps, we already know that we

can use the commutation or anticommutation rules for the ladder operators and identify

the only nonvanishing contributions, i.e., the ones where the momenta and spins of the

field operators correspond to the momenta and fields of the external particles. We obtain

〈

f
∣

∣S
(2)
(b1)

∣

∣i
〉

= −e2
∫

d4x1d4x2 us f
(k f ) eik f x1γνǫ

∗ν
λ f
(q f )e

iq f x1

×
∫

d4k

(2π)4

i (/k + m)e−ik(x1−x2)

(

k2 −m2 + iǫ
) γµǫ

µ
λi
(qi)e

−iqix2 usi
(ki) e−ikix2

= −e2
∫

d4k

(2π)4
d4x1d4x2 e−i(ki+qi−k)x2 e−i(k−k f−q f )x1

× us f
(k f ) γνǫ

∗ν
λ f
(q f )

i (/k + m)
(

k2 −m2 + iǫ
) γµǫ

µ
λi
(qi) usi

(ki)

= −e2
∫

d4k

(2π)4
(2π)4δ(ki + qi − k)(2π)4δ(k− k f − q f )

× us f
(k f ) γνǫ

∗ν
λ f
(q f )

i (/k + m)
(

k2 −m2 + iǫ
) γµǫ

µ
λi
(qi) usi

(ki)

= (2π)4δ(ki + qi − k f − q f )

× (−e2)us f
(k f ) γνǫ

∗ν
λ f
(q f )

i (/k + m)
(

k2 −m2 + iǫ
)

∣

∣

∣

∣

k=ki+qi

γµǫ
µ
λi
(qi) usi

(ki). (4.201)

Also in this case, conservation of momentum holds true, not only for the sum of the initial

and final momenta, but also at each interaction vertex separately.

As for the first-order case, we can identify the Feynman amplitude, which can be di-

rectly obtained by drawing the Feynman diagram of Fig. 4.16 (b1) and applying Feynman
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rules. To the ones already described before we have to add the rule for the fermion prop-

agator

Fermion propagator: k =
i(/k + m)

k2 −m2 + iǫ
(4.202)

The expression for the Feynman amplitude turns out to be

iM(b1) = −e2 us f
(k f ) γνǫ

∗ν
λ f
(q f )

i (/k + m)
(

k2 −m2 + iǫ
)

∣

∣

∣

∣

k=ki+qi

γµǫ
µ
λi
(qi) usi

(ki). (4.203)

The scattering matrix term S(b2) is very similar to the previous calculation, except for

the fact that the incoming and outgoing photon are attached to different vertices. This

in turn changes how the momentum flowing in the propagator is fixed by momentum

conservation. From the Feynman diagram of Fig. 4.16 (b2), we can directly obtain

iM(b2) = −e2 us f
(k f ) γνǫ

ν
λi
(qi)

i (/k + m)
(

k2 −m2 + iǫ
)

∣

∣

∣

∣

k=ki−q f

γµǫ
∗µ
λ f
(q f ) usi

(ki). (4.204)

Compton scattering by positron (terms S(b3) and S(b4)) behave in a very similar way,

except for the overall sign that has to be reversed due to the inversion of fermion fields, as

shown in Eq. (4.191). This overall sign is however irrelevant in the calculation of physical

observables.

A remark on gauge invariance and unphysical polarization states is in order here.

In the above expressions, we should consider only physical photon polarization states.

However, it is possible to show that unphysical states give a vanishing contribution. Re-

membering Eq. (3.262), we need to check that no contribution arises if we replace either

or both ǫ∗νλ f
(q f ) → qνf and ǫµλi

(qi) → qµi . Let us check in fact what happens if we do the

first replacement. We need to use the following identities

ki + qi = k f + q f , /q f/k f = −/k f /q f + 2k f · q f , u(k f )(/k f −m) = 0. (4.205)

to obtain

iM(b1) = −e2 us f
(k f ) /q f

i (/k f + /q f + m)
(

2k f · q f + iǫ
) γµǫ

µ
λi
(qi) usi

(ki)

= −e2 us f
(k f )/ǫλi

(qi) usi
(ki)

(4.206)

The amplitude does not vanish by itself, however we still have to sum it to the contribu-

tion (b2). Using

/q f/ki = −/ki/q f + 2ki · q f , (/ki −m)u(ki) = 0. (4.207)
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we obtain

iM(b2) = −e2 us f
(k f ) γνǫ

ν
λi
(qi)

i (/ki − /q f + m)
(

− 2ki · q f + iǫ
) /q f usi

(ki).

= e2 us f
(k f )/ǫλi

(qi) usi
(ki).

(4.208)

Therefore, we can conclude that in this process contributions from unphysical polariza-

tion states cancel in the sum of the amplitudes. This is a specific example of Ward’s

identity.

4.8.2 Relation to time-ordered perturbation theory [optional]

In Eq. (4.201) we obtained that four-momentum is conserved at each vertex. It is inter-

esting to note that this depends on the fact that we used the propagator in its manifestly

covariant form, Eq. (4.115). Suppose we use the time-ordered version of Eq. (4.114), which

is equivalent to integrating the scattering matrix expression over the k0 variable. We ob-

tain

〈

f
∣

∣S
(2)
(b1)

∣

∣i
〉

= −e2
∫

d4x1d4x2 us f
(k f ) eik f x1γνǫ

∗ν
λ f
(q f )e

iq f x1θ(t1 − t2) e−iωk(t1−t2)

×
∫

d3k

(2π)32ωk
(/k + m)

∣

∣

∣

k0=ωk

ei~k·(~x1−~x2) γµǫ
µ
λi
(qi)e

−iqix2 usi
(ki) e−ikix2

− e2
∫

d4x1d4x2 us f
(k f ) eik f x1γνǫ

∗ν
λ f
(q f )e

iq f x1θ(t2 − t1) e−iωk(t2−t1)

×
∫

d3k

(2π)32ωk
(−/k + m)

∣

∣

∣

k0=ωk

e−i~k·(~x1−~x2) γµǫ
µ
λi
(qi)e

−iqix2 usi
(ki) e−ikix2 .

(4.209)

To keep the discussion short, let us focus only on the first term. Let us write explicitly

the time and three-vector components of each four-vector, then integrate over the space

components of x1 and x2 and finally integrate over the space components of k:

〈

f
∣

∣S
(2)
(b1)

∣

∣i
〉

= −e2
∫

d3k

(2π)32ωk
dt1d3x1dt2d3x2 e−i(ωki

+ωqi
−ωk)t2 ei(~ki+~qi−~k)·~x2

× e
−i(ωk−ωk f

−ωq f
)t1

ei(~k−~k f−~q f )·~x1 θ(t1 − t2)

× us f
(~k f ) γνǫ

∗ν
λ f
(~q f ) (ωkγ

0 −~k · ~γ + m) γµǫ
µ
λi
(~qi) usi

(~ki) + . . .

= −e2
∫

d3k

(2π)32ωk
dt1dt2 e−i(ωki

+ωqi
−ωk)t2(2π)3δ3(~ki +~qi −~k)

× e
−i(ωk−ωk f

−ωq f
)t1(2π)3δ3(~k−~k f −~q f ) θ(t1 − t2)

× us f
(~k f ) γνǫ

∗ν
λ f
(~q f ) (ωkγ

0 −~k · ~γ + m) γµǫ
µ
λi
(~qi) usi

(~ki) + . . .

= −e2(2π)3δ3(~ki +~qi −~k f −~q f )
∫

dt1dt2 e−i(ωki
+ωqi

−ωk)t2
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× e
−i(ωk−ωk f

−ωq f
)t1
θ(t1 − t2)

× us f
(~k f ) γνǫ

∗ν
λ f
(~q f )

(ωkγ
0 −~k · ~γ + m)

2ωk

∣

∣

∣

∣

~k=~ki+~qi

γµǫ
µ
λi
(~qi) usi

(~ki) + . . .

(4.210)

We are still left with the two integrations over the time components of x1 and x2. In the

covariant calculation, these two integrations where done before the k0 integration and

led to the conservation of energy at each vertex of the diagram. Here, it is convenient to

perform the change of variable t1 = t + t2:

〈

f
∣

∣S
(2)
(b1)

∣

∣i
〉

= −e2(2π)3δ3(~ki +~qi −~k f −~q f )
∫

dt dt′ e
−i(ωki

+ωqi
−ωk f

−ωq f
)t2

e
−i(ωk−ωk f

−ωq f
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×θ(t) us f
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λ f
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(~qi) usi

(~ki) + . . .

(4.211)

The t2 integration corresponds to the Fourier transform of a constant, giving us a delta

function:
∫

dt2 e
−i(ωki

+ωqi
−ωk f

−ωq f
)t2 = 2πδ(ωki

+ωqi
−ωk f

−ωq f
), (4.212)

and a Fourier transform of a step function that gives us (considering already that the

previous delta function impliesωki
+ωqi

= ωk f
+ωq f

)

∫

dt e−i(ωk−ωki
−ωqi

)t
θ(t) =

−i

(ωk −ωki
−ωqi

)− iǫ
. (4.213)

The last equality can be checked by anti-Fourier transforming and using Cauchy’s theo-

rem.

In conclusion, reinserting explicitly the contribution from the second time-ordered

diagram, we obtain the following expression
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(

us f
(k f ) γνǫ

∗ν
λ f
(q f )

i(ωkγ
0 −~k · ~γ + m)

2ωk(ωk −ωki
−ωqi

− iǫ)

∣

∣

∣

∣

~k=~ki+~qi

γµǫ
µ
λi
(qi) usi

(ki)

+ us f
(k f ) γνǫ

∗ν
λ f
(q f )

i(ωkγ
0 −~k · ~γ −m)

2ωk(ωk +ωki
+ωqi

− iǫ)

∣

∣

∣

∣

~k=−(~ki+~qi)

γµǫ
µ
λi
(qi) usi

(ki)

)

.

(4.214)

Comparing this last result with the expression in Eq. (4.201) we can highlight similar-

ities and differences between the “covariant” version and the “time-ordered” version of

the calculation. They are equivalent, but can be given different interpretations.
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Figure 4.17: Time-ordered Feynman diagrams contributing to Compton scattering in the s-channel. Their

sum corresponds to Fig. 4.16 b1. (Spin and polarization indices are not written.)

In both cases, the total four-momentum is conserved.

In the covariant treatment, Eq. (4.201), energy and momentum are conserved at each

vertex, but the intermediate state is off-shell, i.e., it is a virtual particle with k0 6= ωk. In

fact, as we have shown for the first-order calculations, it would be impossible to guarantee

four-momentum conservation at each vertex with on-shell particles. Note that, due to

the denominator of the propagator, particles with higher virtuality contribute less to the

amplitude.

In the time-ordered treatment, Eq. (4.214), all the contributions from all possible ways

to order the vertices have to be taken into considerations. With n vertices, there are n!

possible time-ordered diagrams. In this example there are only two, depicted in Fig. 4.17.

The left panel shows a process where an electron absorbs a photon and radiates a photon

at a later time. The right panel shows a process where an electron, a positron, and a

photon are produced from the vacuum and at a later time the positron annihilates by

combining with an electron and a photon.

Finally, in the time-ordered treatment the intermediate state is an on-shell particle or

antiparticle (both states contribute) with k0 = ωk, but energy is not conserved at each vertex.

There is a violation of energy-conservation, but only for the intermediate states. Note

that, due to the denominator of the propagator, contributions with a larger violation of

energy conservation are less relevant.

4.8.3 Example: Møller scattering

Let us see another example for illustration purposes, without repeating all the calcula-

tions. Let us consider the term S(c5) corresponding to Møller scattering, i.e.,

S
(2)
(c5)

= − e2

2!

∫

d4x1d4x2

(

γαABiDF,αβ(x1 − x2)γ
β
CD

)

ψ
−
A(x1)ψ

−
C (x2)ψ

+
B (x1)ψ

+
D(x2). (4.215)

The initial and final states are
∣

∣i
〉

= c†si
(ki)c

†
ri
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∣

∣0
〉

,
〈

f
∣

∣ =
〈

0
∣

∣cs f
(k f )cr f

(p f ). (4.216)
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When acting, for instance, with the ψ+(x1) field, there are two possibilities: we can de-

stroy the electron with momentum pi or the one with momentum ki. The same happens

with the final-state electrons. There are in total four possibilities, but only two of them

are distinct. Two of them are connected by the interchange of the integration variables x1

and x2 and simply combine together to get rid of the 2! denominator. The corresponding

two Feynman diagrams are depicted in Fig. 4.18.
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Figure 4.18: Feynman diagrams contributing to Møller scattering.

The two distinct possibilities lead to these final results

iM(m1) = −e2 us f
(k f )γ

µusi
(ki)

−igµν
(q2 + iǫ)

∣

∣

∣

∣

q=ki−k f

ur f
(p f )γ

νuri
(pi), (4.217)

iM(m2) = +e2 ur f
(p f )γ

µusi
(ki)

−igµν
(q2 + iǫ)

∣

∣

∣

∣

q=ki−p f

us f
(k f )γ

νuri
(pi). (4.218)

The difference in sign is very important: it is due to the switching of the two final-state

fermion fields and it is an example of what was discussed at the end of the previous

section (i.e., the fact that only the relative sign between two contributions to the same

process matter, and it can be fixed by checking if there is an interchange of two fermion

fields).

4.9 Cross section calculations

We resort to scattering experiments to test the behavior of our theory and the outcome

of the calculations of the scattering matrix. Usually, two beams of particles are made

to collide, or a beam is scattered off a target. The observable quantity is the number of

events in the detector (Nev). This quantity depends however on the characteristics of the

experiment: intensity of the beam, density of the target, relative velocity, efficiency, etc.

These parameters define the so-called “luminosity” (L) of the experiment. The luminosity

can be formally defined as the number of incident particles (Ninc) per unit surface (S)

times the number of scattering centers (Ncen) and has the dimensions of [L]−2, or [M]2 in
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natural units.4 The number of scattering events is related to the product of the luminosity

times the cross section. The cross section can be defined as

σ =
Nev

L ≡ Nev

Ninc Ncen/S
(4.219)

therefore an observable quantity (number of events/luminosity), which is characteristic

of the process under consideration and independent of the specific experiment where the

process is measured.

A discussion of how the cross section is connected to the scattering matrix and the

Feynman amplitude is presented, e.g., in Sec. 4.5 of Peskin–Schroeder, in Sec. 8.1 of

Mandl–Shaw, in Sec. 4.3 of Halzen–Martin. Here, we consider only the outcome of the

discussion.

Consider a process where two particles A and B scatter and produce a certain number

of final-state particles n. The general formula expressing the relation between a differen-

tial cross section and the S matrix is

dσ =
1

4
√

(pA · pB)2 −m2
Am2

B

|M|2 ∏
f

d3 p f

(2π)32E f
(2π)4δ4

(

pA + pB − ∑p f

)

. (4.220)

The denominator of the first term is often called the flux factor, since it is connected to the

flux of particles impinging on a target. The formula is valid in any frame where the two

initial particles are collinear.

The final part of the cross-section formula (from the product symbol) is called the

Lorentz-invariant phase space (LIPS). Using four-momentum conservation we can sim-

plify the phase-space factors. The starting formula is differential in the 3n components

of the n final-state momenta. However, we have four conditions coming from the con-

servation of four-momentum, which means that in the end the cross section can be kept

differential in only 3n− 4 variables. The choice of which variables to consider depends

on taste and, of course, on the need to compare to specific experimental measurements.

We will consider in our calculations only 2→ 2 processes. Therefore, we can keep the

cross section differential in two variables. A common choice are the azimuthal and polar

angles of one of the outgoing particles. We can therefore use the delta of conservation of

momentum to fix the three-momentum of one of the outgoing particles and the modulus

4Normally, the luminosity is actually determined using a process whose cross-section is very well known

and dividing the number of events by the cross section.
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of the momentum of the other particle.

d3 pC

(2π)32EC

d3 pD

(2π)32ED
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)

=
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)

δ
(
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)

=
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(2π)32EC

1

2ED
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EA + EB − EC − ED

)

∣

∣

∣

∣
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=
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∣

∣

∣

∣
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∂|~pC|

∣

∣

∣

∣

−1∣
∣

∣

∣

pA+pB=pC+pD

.

(4.221)

In the last step, we used the properties of the delta function to change from a delta func-

tion expressed in terms of EC + ED to an expression in terms of |~pC|.

Center-of-mass frame

The two most commonly used frames of reference are the center-of-mass frame (CMF)

and the target rest frame (TRF). In the former, we can write the momenta of the two

initial particles as

pA
CMF
=
(

EA, 0, 0, |~pA|
)

, pB
CMF
=
(

EB, 0, 0, −|~pA|
)

(4.222)

with Ex =
√

|~px|2 + m2
x. Therefore

(pA · pB)
2 −m2

Am2
B
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= E2

AE2
B + |~pA|4 + 2EAEB|~pA|2 −m2
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B

=
(
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A

)(

|~pA|2 + m2
B

)

+ |~pA|4 + 2EAEB|~pA|2 −m2
Am2

B

= |~pA|4 + |~pA|2
(

m2
A + m2

B

)

+ |~pA|4 + 2EAEB|~pA|2

= |~pA|2
(

2|~pA|2 + m2
A + m2

B + 2EAEB

)

= |~pA|2
(

E2
A + E2

B + 2EAEB

)

= |~pA|2
(

EA + EB

)2
.

(4.223)

The flux factor can be written of course in terms of other variables.

For what concerns the phase space, we need to write

pC
CMF
=
(

EC, |~pC| sinθ cosφ, |~pC| sinθ sinφ, |~pC| cosθ
)

, (4.224)

pD
CMF
=
(

ED, −|~pC| sinθ cosφ, −|~pC| sinθ sinφ, −|~pC| cosθ
)

, (4.225)

with EC =
√

|~pC|2 + m2
C and similarly for ED. We obtain

∂(EC + ED)

∂|~pC|
=

∂

∂|~pC|
(
√

|~pC|2 + m2
C +

√

|~pC|2 + m2
D

)

= |~pC|
( 1

EC
+

1

ED

)

. (4.226)
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Putting everything together we arrive at the following compact formula for a AB →
CD scattering in the CMF

dσ =
1

4|~pA|
(

EA + EB

) |M|2 |~pC|2dΩ

(2π)22EC2ED

1

|~pC|
ECED

EC + ED

=
dΩ

64π2
(

EA + EB

)2

|~pC|
|~pA|

|M|2.

(4.227)

Particularly simple is the case when all four particles have the same mass (including

when all masses are neglected). Under these conditions, we have Ea = EB ≡ E and

|~pC| = |~pA|. The formula reduces to

dσ =
dΩ

64π24E2
|M|2 if ma = mb = mc = md. (4.228)

Target rest-frame

Let us analyze the formula in the target rest frame. For the calculation of the flux factor,

we have

pA
TRF
=
(

EA, 0, 0, |~p|A
)

, pB
TRF
=
(

mB, 0, 0, 0
)

(

EA =
√

|~p|2A + m2
A

)

(4.229)

(although we use the same notation, EA and ~pA are obviously different in the CMF and

in the TRF). Therefore

(pA · pB)
2 −m2

Am2
B

TRF
= E2

Am2
B −m2

Am2
B = |~p|2m2

B. (4.230)

For the calculation of the phase space, for convenience let us neglect mA and mC and

set mB = mD. We have

pC
TRF
=
(

|~pC|, |~pC| sinθ cosφ, |~pC| sinθ sinφ, |~pC| cosθ
)

, (4.231)

pD
TRF
=
(

ED, |~pD| sinθD cosφ, |~pD| sinθD sinφ, |~pD| cosθD

)

, (4.232)

with ED =
√

|~pD|2 + m2
D. Conservation of three-momentum requires

|~pD| sinθD = −|~pC| sinθ, |~pD| cosθD = EA − |~pC| cosθ. (4.233)

Squaring and summing the above:

|~pD|2 = |~pC|2 + E2
A − 2EA|~pC| cosθ (4.234)

from which

ED =
√

|~pC|2 + E2
A − 2EA|~pC| cosθ+ m2

D. (4.235)
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We can then write

∂(EC + ED)

∂|~pC|
=

∂

∂|~pC|
(

|~pC|+
√

|~pC|2 + E2
A − 2EA|~pC| cosθ+ m2

D

)

= 1 +
|~pC| − EA cosθ

√

|~pC|2 + E2
A − 2EA|~pC| cosθ+ m2

D

= 1 +
|~pC| − EA cosθ

ED
.

(4.236)

Conservation of energy implies (it takes some steps to prove it)

EA + mB − |~pC| = ED ⇒ 1 +
|~pC| − EA cosθ

ED
=

mBEA

|~pC|ED
. (4.237)

In conclusion, a compact formula for a AB→ CD scattering in the TRF, neglecting the

mass of particles A and C is (keeping in mind that EA = |~pA| and EC = |~pC|)

dσ =
1

4|~pA|mB
|M|2 |~pC|2dΩ

(2π)22EC2ED

|~pC|ED

mBEA

=
dΩ

64π2m2
B

E2
C

E2
A

|M|2.

(4.238)

4.9.1 Mandelstam variables

In AB→ CD processes, it is often useful to introduce the Lorentz invariants

s = (pA + pB)
2 = (pC + pD)

2 = m2
A + m2

B + 2pA · pB = m2
C + m2

D + 2pC · pD, (4.239)

t = (pA − pC)
2 = (pB − pD)

2 = m2
A + m2

C − 2pA · pC = m2
B + m2

D − 2pB · pD, (4.240)

u = (pA − pD)
2 = (pB − pC)

2 = m2
A + m2

D − 2pA · pD = m2
B + m2

C − 2pB · pC. (4.241)

The Mandelstam variables are not independent

s + t + u = 3m2
A + m2

B + m2
C + m2

D + 2pA · (pB − pC − pD)

= 3m2
A + m2

B + m2
C + m2

D − 2pA · pA = m2
A + m2

B + m2
C + m2

D.
(4.242)

It is useful to express Mandelstam variables in terms of CMF observables, especially

when mA = mB and mC = mD respectively. Using Eqs. (4.222), (4.224), (4.225) we obtain

s = (EA + EB)
2 = (EC + ED)

2 = 4E2, (4.243)

t = −|~pA|2 − |~pC|2 + 2|~pA||~pC| cosθ

= −2E2

(

1−

√

1− m2
A

E2

√

1− m2
C

E2
cosθ− m2

A + m2
B

2E2

)

,
(4.244)

u = −2E2

(

1 +

√

1− m2
A

E2

√

1− m2
C

E2
cosθ− m2

A + m2
B

2E2

)

. (4.245)
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Particularly useful for our purposes is the case when all particles are massless (ultra-

relativistic approximation), for which we have

s = 2pA · pB = 2pC · pD = 4E2, (4.246)

t = −2pA · pC = −2pB · pD = −2E2(1− cosθ), (4.247)

u = −2pA · pD = −2pB · pC = −2E2(1 + cosθ), (4.248)

s + t + u = 0. (4.249)

4.10 Examples of cross section calculations

Detailed calculations of the cross sections for the basic elementary processes of QED are

presented in the lecture notes of prof. F. Piccinini (available in the library), in Ch. 8 of

Mandl–Shaw, in Ch. 8 of Aitchison–Hey, Ch. 5 of Peskin–Schroeder.

4.10.1 Example 1: e+e− → µ+µ−

Fig. 4.19 shows the Feynman diagram for the process under consideration at order α.

This is the leading order diagram for this process, because there is no contribution at order

e (i.e., order
√
α). This is also a tree-level diagram, because it contains no loops. Finally,

this is also called a s channel diagram, because the momentum squared flowing into the

intermediate propagator is equal to the Mandelstam variable s.

e−(s−)
p−

e+(s+)

p+
β

µ−(r−)
k−

µ+(r+)

k+α

Figure 4.19: Feynman diagram for the process e+e− → µ+µ−.

Using Feynman rules, we can immediately write the corresponding Feynman ampli-

tude

iM = e2 ve,s+(p+)γβue,s−(p−)
i gβα

(

q2 + iǫ
)

∣

∣

∣

∣

q=p++p−

um,r−(k−)γαvm,r+(k+) (4.250)

and its complex conjugate

−iM∗ = −e2 vm,r+(k+)γρum,r−(k−)
i gρσ

(

q2 − iǫ
)

∣

∣

∣

∣

q=p++p−

ue,s−(p−)γσve,s+(p+). (4.251)
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The modulus squared of the amplitude is (the dependence on spin and momenta is

temporarily dropped for convenience)

|M|2 =
e4

s2

(

ve+γαue−
) (

um−γ
αvm+

)(

vm+γσum−
) (

ue−γσve+

)

=
e4

s2

(

ue−γσve+

)(

ve+γαue−
) (

um−γ
αvm+

)(

vm+γσum−
)

.

(4.252)

In the last step, we made use of the fact that each term in parenthesis is a Dirac scalar

and we are allowed to move it in a different position. Moreover, if we write explicitly

the Dirac indices we are free to rearrange all terms and move the spinors in order to

reconstruct structures like uu and vv and

|M|2 =
e4

s2

(

ue−
)

E

(

γσ
)

EF

(

ve+ve+
)

FG

(

γα
)

GH

(

ue−
)

H

×
(

um−
)

A

(

γα
)

AB

(

vm+vm+

)

BC

(

γσ
)

CD

(

um−
)

D

=
e4

s2

(

γσ
)

EF

(

ve+ve+
)

FG

(

γα
)

GH

(

ue−ue−
)

HE

×
(

γα
)

AB

(

vm+vm+

)

BC

(

γσ
)

CD

(

um−um−
)

DA

=
e4

s2
Tr
[

γσ ve+ve+γα ue−ue−
]

Tr
[

γα vm+vm+ γσ um−um−
]

.

(4.253)

Note that we reduced the expression to a contraction of two Lorentz tensors, one referring

to the electron-positron side and one referring to the muon-antimuon side. Each one of

these tensors, called leptonic tensor, is written as a trace of a product of Dirac matrices in

the Dirac space of the electron and of the muon fields, respectively.

We choose not to consider the polarization of the external particles: we average over

initial state and sum over final state polarization. We obtain

1

4 ∑
s+ ,s− ,r+ ,r−

|M|2 =
e4

4s2
Tr
[

γσ

(

∑
s+

ve+ve+

)

γα

(

∑
s−

ue−ue−
)]

× Tr
[

γα
(

∑
r+

vm+vm+

)

γσ
(

∑
r−

um−um−
)]

=
e4

4s2
Tr
[

γσ
(

/p+ −me

)

γα
(

/p− + me

)

]

× Tr
[

γα
(

/k+ −mm

)

γσ
(

/k− + mm

)

]

.

(4.254)
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After the calculation of the traces, we obtain

1

4 ∑
spin

|M|2 =
e4

4s2
4
[

p−σ p+α + p+σ p−α − (p− · p+)gσα −m2
egσα

]

× 4
[

kσ−kα+ + kσ+kα− − (k− · k+)gσα −m2
mgσα

]

=
4e4

s2

[

2(p− · k+)(p+ · k−) + 2(p− · k−)(p+ · k+) + . . .
]

=
2e4

s2

[

2(p− · k+)2(p+ · k−) + 2(p− · k−)2(p+ · k+) + . . .
]

=
2e4

s2

[

u2 + t2 + . . .
]

≈ 32π2α2 u2 + t2

s2
.

(4.255)

From the second step, we neglected the masses of the electron and of the muon. This is a

good approximation if s is much larger than mm.
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Figure 4.20: Experimental data for the total cross section of the process e+e− → µ+mu− compared with

Eq. (4.258). Data are available online at https: // www. hepdata. net/ and are from the following ex-

periments: DASP@DORIS [12], CELLO@PETRA [9, 10], JADE@PETRA [8], TASSO@PETRA [13],

ALEPH@LEP [5], SND@VEPP-2M [2].

To write the cross section, we express the Mandelstam invariants in terms of the CMS

polar angle

u2 + t2

s2
=

1

4
(1 + cosθ)2 +

1

4
(1− cosθ)2+ =

1

2
(1 + cos2θ) (4.256)

Replacing into Eq. (4.228) we obtain the differential cross section

dσ

dΩ
=
α2

4s
(1 + cos2θ). (4.257)
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Figure 4.21: Feynman diagrams contributing to the process e−e+ → γγ.

This differential cross section can be integrated over cosθ to give

σ =
4πα2

3s
. (4.258)

The result for the cross section can be compared with experimental measurements

from colliders operating at different values of the C.M.F. energy,
√

s, shown in Fig. 4.20.

The agreement is excellent.

4.10.2 Example 2: e+e− → γγ

Here we consider an example that is not included in Piccinini’s notes: the process e+e− →
γγ. There are two ”channels” for this process. The relevant Feynman diagrams are de-

picted in Fig. 4.21. The Feynman amplitudes for the two channels are

iM(t) = −e2 vs2(p2) γµǫ
∗µ
λ2
(q2)

i (/k + m)
(

k2 −m2 + iǫ
)

∣

∣

∣

∣

k=p1−q1

γνǫ
∗ν
λ1
(q1) us1(p1), (4.259)

iM(u) = −e2 vs2(p2) γµǫ
∗µ
λ1
(q1)

i (/k + m)
(

k2 −m2 + iǫ
)

∣

∣

∣

∣

k=p1−q2

γνǫ
∗ν
λ2
(q2) us1(p1). (4.260)

The first diagram is called a t-channel diagram, since the momentum k flowing in the

propagator fulfills k2 = t. The second diagram is called a u-channel diagram, since in this

case k2 = u. The two amplitudes have the same sign, because they are connected by an

exchange of bosonic fields.

The complex-conjugate amplitudes are

−iM∗
(t) = e2 us1(p1) /ǫλ1

(q1)
i (/k + m)

(

k2 −m2 − iǫ
)

∣

∣

∣

∣

k=p1−q1

/ǫλ2
(q2) vs2(p2), (4.261)

−iM∗
(u) = e2 us1(p1) /ǫλ2

(q2)
i (/k + m)

(

k2 −m2 − iǫ
)

∣

∣

∣

∣

k=p1−q2

/ǫλ1
(q1) vs2(p2). (4.262)

We do not consider the polarization of the external particles: we average over initial



154 4. Interacting quantum fields

state and sum over final state polarization. We obtain

1

4 ∑
s1 ,s2 ,λ1 ,λ2

|M|2 =
1

4 ∑
s1 ,s2 ,λ1 ,λ2

(

|Mt|2 +MtM∗
u +MuM∗

t + |Mu|2
)

. (4.263)

We start analyzing the first term. First of all, we turn the product of Dirac spinors and

matrices into a trace of Dirac matrices, similarly to what we have done in Eq. (4.68). To

follow this step, we consider the Dirac structure of the scattering amplitude and write

explicitly the Dirac indices

vs2 A(p2)
(

/ǫ∗λ2
(q2) (/p1 − /q1 + m) /ǫ∗λ1

(q1)
)

AB
us1B(p1)

× us1C(p1)
(

/ǫλ1
(q1) (/p1 − /q1 + m) /ǫλ2

(q2)
)

CD
vs2D(p2)

= vs2D(p2)vs2 A(p2)
(

/ǫ∗λ2
(q2) (/p1 − /q1 + m) /ǫ∗λ1

(q1)
)

AB
us1B(p1)

× us1C(p1)
(

/ǫλ1
(q1) (/p1 − /q1 + m) /ǫλ2

(q2)
)

CD

= Tr
[

vs2(p2)vs2(p2)/ǫ
∗
λ2
(q2) (/p1 − /q1 + m) /ǫ∗λ1

(q1) us1(p1)

× us1(p1) /ǫλ1
(q1) (/p1 − /q1 + m) /ǫλ2

(q2)
]

(4.264)

Inserting this result into the t-channel squared amplitude we obtain

1

4 ∑
s...λ...

|Mt|2 =
e4

(

t−m2
)2

1

4 ∑
λ1 ,λ2

Tr
[

∑
s2

vs2(p2)vs2(p2)/ǫ
∗
λ2
(q2) (/p1 − /q1 + m)

× /ǫ∗λ1
(q1)∑

s1

us1(p1)us1(p1)/ǫλ1
(q1) (/p1 − /q1 + m) /ǫλ2

(q2)
]

=
e4

4
(

t−m2
)2 ∑

λ2

ǫ
µ∗
λ2
(q2)ǫ

β
λ2
(q2)∑

λ1

ǫν∗λ1
(q1)ǫ

α
λ1
(q1)

× Tr
[

(/p2 −m)γµ(/p1 − /q1 + m)γν(/p1 + m)γα(/p1 − /q1 + m)γβ
]

.

(4.265)

In the second step, we made use of the definition of positive and negative energy pro-

jectors, Eqs. (2.255) and (2.256).5 At this point, we have to worry about the summation

over photon polarizations. In principle, we should consider here only physical polariza-

tion states of the photon, i.e., use the expression in Eq. (3.260). However, we can check

that the addition of unphysical states is irrelevant in the sumM(t) +M(u), with similar

steps as discussed for Compton scattering in Sec. 4.8.1. This is another example of the

application of Ward’s identity. Because of this, we can replace

∑
λ

ǫ
µ∗
λ (q)ǫαλ(q)→ −gµα . (4.266)

5Note that Piccinini and Mandl–Shaw have different conventions concerning the normalization of

spinors, leading to a 1/2m factor in the projectors.
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Using the above replacement, we can write

1

4 ∑
s...λ...

|Mt|2 =
e4

4
(

t−m2
)2

Tr
[

(/p2 −m)γβ(/p1 − /q1 + m)γα(/p1 + m)γα(/p1 − /q1 + m)γβ
]

=
e4

4
(

t−m2
)2

Tr
[

(−2/p2 + 4m)(/p1 − /q1 + m)(−2/p1 + 4m)(/p1 − /q1 + m)
]

.

(4.267)

In the second step we made use of property (2.80). To simplify the calculations, from now

on we neglect particle masses and obtain

1

4 ∑
s...λ...

|Mt|2 ≈
e4

t2
Tr
[

/p2(/p1 − /q1)/p1(/p1 − /q1)
]

=
e4

t2
4
[

2
(

p2 · (p1 − q1)
)(

p1 · (p1 − q1)
)

− (p2 · p1)
(

(p1 − q1) · (p1 − q1)
)]

= 2
e4

t2

[

− (2p2 · p1)(2p1 · q1) + (2p2 · q1)(2p1 · q1)− 2p2 · p1 (p1 − q1)
2
]]

= 2
e4

t2

(

st + ut− st
)

= 2e4 u

t
.

(4.268)

Similar calculations yield (it is sufficient to replace q1 → q2 in the t-channel calcula-

tions)

1

4 ∑
s...λ...

|Mu|2 ≈ 2e4 t

u
. (4.269)

The interference terms are a bit more complex:

1

4 ∑
s...λ...

MtM∗
u = e4 1

4 ∑
s...λ...

vs2(p2)/ǫ
∗
λ2
(q2)

(/p1 − /q1 + m)
(

t−m2
) /ǫ∗λ1

(q1) us1(p1)us1(p1)

× /ǫλ2
(q2)

(/p1 − /q2 + m)
(

u−m2
) /ǫλ1

(q1) vs2(p2)

=
e4

4
(

t−m2
)(

u−m2
)

× Tr
[

(/p2 −m)γα(/p1 − /q1 + m)γβ(/p1 + m)γα(/p1 − /q2 + m)γβ
]

(4.270)

To simplify the trace, we make use of Eqs. (2.82) followed by (2.81). Neglecting masses
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from now on

1

4 ∑
s...λ...

MtM∗
u ≈

e4

4tu
Tr
[

− 2/p2 /p1γ
β(/p1 − /q1)(/p1 − /q2)γβ

]

= − e4

tu
8(p1 · p2)

(

(p1 − q1) · (p1 − q2)
)

= − e4

tu
2(2p1 · p2)

(

− (2p1 · q2)− (2p1 · q1) + (2q1 · q2)
)

= −2
e4

tu
s(u + t + s) = 0.

(4.271)

The final result for the squared scattering matrix is

1

4 ∑
s1 ,s2 ,λ1 ,λ2

|M|2 ≈ 2e4

(

u

t
+

t

u

)

= 32π2α2

(

u

t
+

t

u

)

. (4.272)

Writing Mandelstam variables in terms of CMS angles and replacing into Eq. (4.228) we

obtain the differential cross section

dσ

dΩ
=
α2

4E2

(

1 + cos2θ

sin2θ

)

=
α2

s

(

1 + cos2θ

sin2θ

)

. (4.273)

We can test the validity of this (lowest order) QED calculation against experimental

data. Fig. 4.22 shows results from four experiments at different values of s. The agreement

is very good (χ2/d.o.f. = 1.2, without taking into account systematic errors).

4.11 Conclusions

In this chapter we have considered interactions between different fields. We reviewed

the concept of a scattering matrix and its expansion in terms of the interaction coupling

constant. We have seen how to compute the scattering matrix at the lowest order in

the coupling constant and how to relate it to cross sections, which are experimentally

measurable.

Typical questions that can come out during the exam:

1. Derive and discuss the QED Lagrangian;

2. Derive Wick’s theorem for a product of two field operators;

3. Compute any of the Feynman propagators discussed in the lectures;

4. Obtain an expression of the scattering matrix for QED at order e for some initial or

final state and discuss the relation with Feynman rules;

5. Obtain an expression of the scattering matrix for QED at order e2 for some initial or

final state and discuss the relation with Feynman rules.
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Figure 4.22: Experimental data for the process e+e− → γγ compared with Eq. (4.273). Data are available

online at https: // www. hepdata. net/ and are from the following experiments: JADE@PETRA [7],

HSR@SLAC [14], MAC@SLAC [19], L3@LEP [1].
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