Preliminary plan

1.Introduction
2.Inclusive and semi-inclusive DIS (structure functions)

Basics of collinear PDFs at tree level (definition, gauge link)
3.Basics of collinear PDFs (interpretation)

Basics of TMDs at tree level (definition, gauge link, interpretation)
4.Basics of factorization

Basics of TMD evolution

- Phenomenology of unpolarized SIDIS
- Phenomenology of polarized SIDIS

Next lecture

- May 27, 12:00 PM in F113

Quick review of last lecture

TMD factorization

Collins, Soper, NPB 193 (81) Ji, Ma, Yuan, PRD 71 (05)

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right] \\
& =H\left(Q^{2}, \mu^{2}, \zeta, \zeta_{h}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
\end{aligned}
$$

TMD PDF

High and low transverse momentum

SIDIS once again

$$
\begin{aligned}
Q & =\text { photon virtuality } \\
M & =\text { hadron mass } \\
P_{h \perp} & =\text { hadron transverse momentum } \quad q_{T}^{2} \approx P_{h \perp}^{2} / z^{2}
\end{aligned}
$$

Low and high transverse momentum

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)

TMD factorization

Collins, Soper, NPB 193 (81) Ji, Ma, Yuan, PRD 71 (05)

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right] \\
& =H\left(Q^{2}, \mu^{2}, \zeta, \zeta_{h}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& \quad x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
\end{aligned}
$$

Low and high transverse momentum

Collinear factorization

$$
\begin{aligned}
F\left(x, z, Q^{2}\right)= & \frac{1}{Q^{2} z^{2}} x \sum_{a, b} \int_{x}^{1} \frac{d \hat{x}}{\hat{x}} \int_{z}^{1} \frac{d \hat{z}}{\hat{z}} \delta\left(\frac{P_{h \perp}^{2}}{Q^{2} z^{2}}-\frac{(1-\hat{x})(1-\hat{z})}{\hat{x} \hat{z}}\right) \\
& \times f^{a}\left(\frac{x}{\hat{x}}, \mu_{F}^{2}\right) D^{b}\left(\frac{z}{\hat{z}}, \mu_{F}^{2}\right) H_{a b}^{\prime}\left(\hat{x}, \hat{z}, \ln \frac{\mu_{F}^{2}}{Q^{2}}\right)
\end{aligned}
$$

Low and high transverse momentum

Matching

The leading high $-q_{T}$ part is just the "tail" of the leading low- q_{T} part

Low and high transverse momentum

Perturbative corrections to TMDs

(a)

(b)

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\frac{\alpha_{s}}{2 \pi^{2}} \frac{1}{\boldsymbol{p}_{T}^{2}}\left[\frac{L\left(\eta^{-1}\right)}{2} f_{1}^{q}(x)-C_{F} f_{1}^{q}(x)+\left(P_{q q} \otimes f_{1}^{q}+P_{q g} \otimes f_{1}^{g}\right)(x)\right],
$$

$$
F_{U U, T}=\frac{1}{q_{T}^{2}} \frac{\alpha_{s}}{2 \pi^{2} z^{2}} \sum_{a} x e_{a}^{2}\left[f_{1}^{a}(x) D_{1}^{a}(z) L\left(\frac{Q^{2}}{q_{T}^{2}}\right)+f_{1}^{a}(x)\left(D_{1}^{a} \otimes P_{q q}+D_{1}^{g} \otimes P_{g q}\right)(z)\right.
$$

Large log, needs resummation
where $L\left(\frac{Q^{2}}{q_{T}^{2}}\right)=2 C_{F} \ln \frac{Q^{2}}{q_{T}^{2}}-3 C_{F}$
DGLAP splitting functions

TMD factorization: b space

Sudakov form factor

 collinear PDF and FF calculable with PQCD nonperturbative part of TMDs

$$
F_{U U, T}\left(x, z, q_{T}^{2}, Q^{2}\right)=x \sum_{a} e_{a}^{2} \frac{d}{d q_{T}^{2}}\left[\left(f_{1}^{i} \otimes \mathcal{C}_{i a}\right)\left(\mathcal{C}_{a j} \otimes D_{1}^{j}\right) e^{-S}\left(1-e^{-S_{N P}}\right)\right]
$$

Leading-log formula

$$
\begin{gathered}
F_{U U, T}\left(x, z, q_{T}^{2}, Q^{2}\right)=x \sum_{a} e_{a}^{2} \frac{d}{d q_{T}^{2}}\left[f_{1}^{a}\left(x ;\left[q_{T}^{2}\right]\right) D_{1}^{a}\left(z ;\left[q_{T}^{2}\right]\right) e^{-S}\left(1-e^{-S_{N P}}\right)\right] \\
S\left(q_{T}^{2}, Q^{2}\right)=-\int_{q_{T}^{2}}^{Q^{2}} \frac{d \mu^{2}}{\mu^{2}} \frac{\alpha_{S}\left(\mu^{2}\right)}{2 \pi} 2 C_{F} \log \frac{Q^{2}}{\mu^{2}} \\
\alpha_{s}\left(\mu^{2}\right)=\frac{4 \pi}{\beta_{0} \log \left(\mu^{2} / \Lambda^{2}\right)}
\end{gathered}
$$

Part 5: Unpolarized Phenomenolgy

Experimental access

$$
\text { Drell-Yan } \quad \frac{d \sigma}{d q_{T}^{2}} \sim \sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes f_{1}^{\bar{q}}\left(\bar{x}, \bar{p}_{T}^{2}\right)
$$

Semi-inclusive DIS

$$
\frac{d \sigma}{d q_{T}^{2}} \sim \sum_{q} e_{q}^{2} f_{1}^{q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, k_{T}^{2}\right)
$$

electron-positron annihilation

$$
\frac{d \sigma}{d q_{T}^{2}} \sim \sum_{q} e_{q}^{2} D_{1}^{q}\left(z, k_{T}^{2}\right) \otimes D_{1}^{\bar{q}}\left(\bar{z}, \bar{k}_{T}^{2}\right)
$$

Some studies in Drell-Yan

Available studies

Gaussians

D'Alesio, Murgia, PRD70 (04)

Gaussians
 +kT resummation

Landry, Brock, Nadolsky, Yuan, PRD67 (03)

Example of resummation effects

Nonperturbative part

- In b space

$$
\begin{aligned}
S_{N P} & =-\frac{b^{2}}{\left\langle b^{2}\right\rangle} \\
\frac{1}{\left\langle b^{2}\right\rangle} & =0.21+0.68 \log \left(\frac{Q}{3.2}\right)-0.13 \log \left(100 x_{A} x_{B}\right) \quad b_{\max }=0.5 \mathrm{GeV}^{-1}
\end{aligned}
$$

111 data points
(Drell-Yan)

Brock, Landry, Nadolsky, Yuan, PRD67 (03)

Nonperturbative part

- In b space

$$
\begin{aligned}
& S_{N P}=-\frac{b^{2}}{\left\langle b^{2}\right\rangle} \\
& \frac{1}{\left\langle b^{2}\right\rangle}=0.12+0.22 \log \left(\frac{Q}{3.2}\right)+0.29 \log \left(\frac{\sqrt{s}}{19.4}\right) \\
& 1 /\left\langle b^{2}\right\rangle \begin{array}{l}
0.6 \\
0.5
\end{array} \\
& \begin{array}{l}
\text { Note: there should } \\
\text { be a factor 4 }
\end{array} \\
& \text { between 1/b and } k_{T}
\end{aligned}
$$

Nonperturbative part

- In k_{T} space

$$
\begin{aligned}
S_{N P} & =-\frac{q_{T}^{2}}{\left\langle q_{T}^{2}\right\rangle} \\
\left\langle q_{T}^{2}\right\rangle & =0.20+0.95 \log \left(\frac{Q}{3.2}\right)+1.56 \log \left(\frac{\sqrt{s}}{19.4}\right)
\end{aligned}
$$

Q

Unpolarized SIDIS

Unpolarized SIDIS

$$
\begin{aligned}
& \frac{d \sigma}{d x d y d \phi_{S} d z d \phi_{h} d P_{h \perp}^{2}} \\
& =\frac{\alpha^{2}}{x y Q^{2}} \frac{y^{2}}{2(1-\varepsilon)}\left\{F_{U U, T}+\varepsilon F_{U U, L}+\sqrt{2 \varepsilon(1+\varepsilon)} \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+\varepsilon \cos \left(2 \phi_{h}\right) F_{U U}^{\cos 2 \phi_{h}}\right\}
\end{aligned}
$$

Azimuth-independent pieces

Convolution

$$
\begin{gathered}
F_{U U, T}=\sum_{a} e_{a}^{2} f_{1}^{a} \otimes D_{1}^{a}, \quad F_{U U, L}=\mathcal{O}\left(\frac{M^{2}}{Q^{2}}, \frac{P_{h \perp}^{2}}{Q^{2}}\right) \\
f \otimes D=x_{B} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z\right) f^{a}\left(x_{B}, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right) \\
f \otimes D=x_{B} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}-\boldsymbol{P}_{h \perp} / z+\boldsymbol{l}_{T}\right) f^{a}\left(x_{B}, p_{T}^{2}\right) D^{a}\left(z, k_{T}^{2}\right) U\left(l_{T}^{2}\right) \\
\text { Does not make a big difference if Gaussians are used }
\end{gathered}
$$

Fragmentation functions

For the "favored" functions

$$
\begin{aligned}
D_{1}^{u \rightarrow \pi^{+}}=D_{1}^{\bar{d} \rightarrow \pi^{+}} & =D_{1}^{d \rightarrow \pi^{-}}=D_{1}^{\bar{u} \rightarrow \pi^{-}}, \equiv D_{1}^{\mathrm{f}} \\
D_{1}^{u \rightarrow K^{+}} & =D_{1}^{\bar{u} \rightarrow K^{-}}, \equiv D_{1}^{\mathrm{fd}} \\
D_{1}^{\bar{s} \rightarrow K^{+}} & =D_{1}^{s \rightarrow K^{-}} \equiv D_{1}^{\mathrm{f}^{\prime}}
\end{aligned}
$$

for the "unfavored" functions

$$
\begin{gathered}
D_{1}^{\bar{u} \rightarrow \pi^{+}}=D_{1}^{d \rightarrow \pi^{+}}=D_{1}^{\bar{d} \rightarrow \pi^{-}}=D_{1}^{u \rightarrow \pi^{-}} \equiv D_{1}^{\mathrm{d}} \\
D_{1}^{s \rightarrow \pi^{+}}=D_{1}^{\bar{s} \rightarrow \pi^{+}}=D_{1}^{s \rightarrow \pi^{-}}=D_{1}^{\bar{s} \rightarrow \pi^{-}} \equiv D_{1}^{\mathrm{df}} \\
D_{1}^{\bar{u} \rightarrow K^{+}}=D_{1}^{\bar{d} \rightarrow K^{+}}=D_{1}^{d \rightarrow K^{+}}=D_{1}^{\bar{d} \rightarrow K^{-}}=D_{1}^{d \rightarrow K^{-}}=D_{1}^{u \rightarrow K^{-}} \equiv D_{1}^{\mathrm{dd}} \\
D_{1}^{s \rightarrow K^{+}}=D_{1}^{\bar{s} \rightarrow K^{-}} \equiv D_{1}^{\mathrm{d}^{\prime}}
\end{gathered}
$$

Various combinations

$$
\begin{aligned}
& F_{U U, T}^{p / \pi^{+}}\left(x, z, P_{h \perp}^{2}\right)=\left(4 f_{1}^{u}+f_{1}^{\bar{d}}\right) \otimes D_{1}^{\mathrm{f}}+\left(4 f_{1}^{\bar{u}}+f_{1}^{d}\right) \otimes D_{1}^{\mathrm{d}}+\left(f_{1}^{s}+f_{1}^{\bar{s}}\right) \otimes D_{1}^{\mathrm{df}}, \\
& F_{U U, T}^{p / \pi^{-}}\left(x, z, P_{h \perp}^{2}\right)=\left(4 f_{1}^{\bar{u}}+f_{1}^{d}\right) \otimes D_{1}^{\mathrm{f}}+\left(4 f_{1}^{u}+f_{1}^{\bar{d}}\right) \otimes D_{1}^{\mathrm{d}}+\left(f_{1}^{s}+f_{1}^{\bar{s}}\right) \otimes D_{1}^{\mathrm{df}}, \\
& F_{U U, T}^{n / \pi^{+}}\left(x, z, P_{h \perp}^{2}\right)=\left(4 f_{1}^{d}+f_{1}^{\bar{u}}\right) \otimes D_{1}^{\mathrm{f}}+\left(4 f_{1}^{\bar{d}}+f_{1}^{u}\right) \otimes D_{1}^{\mathrm{d}}+\left(f_{1}^{s}+f_{1}^{\bar{s}}\right) \otimes D_{1}^{\mathrm{df}} \\
& F_{U U, T}^{n / \pi^{-}}\left(x, z, P_{h \perp}^{2}\right)=\left(4 f_{1}^{\bar{d}}+f_{1}^{u}\right) \otimes D_{1}^{\mathrm{f}}+\left(4 f_{1}^{d}+f_{1}^{\bar{u}}\right) \otimes D_{1}^{\mathrm{d}}+\left(f_{1}^{s}+f_{1}^{\bar{s}}\right) \otimes D_{1}^{\mathrm{df}}, \\
& F_{U U, T}^{p / K^{+}}\left(x, z, P_{h \perp}^{2}\right)=4 f_{1}^{u} \otimes D_{1}^{\mathrm{fd}}+\left(4 f_{1}^{\bar{u}}+f_{1}^{d}+f_{1}^{\bar{d}}\right) \otimes D_{1}^{\mathrm{dd}}+f_{1}^{\bar{s}} \otimes D_{1}^{\mathrm{f}^{\prime}}+f_{1}^{s} \otimes D_{1}^{\mathrm{d}^{\prime}}, \\
& F_{U U, T}^{p / K^{-}}\left(x, z, P_{h \perp}^{2}\right)=4 f_{1}^{\bar{u}} \otimes D_{1}^{\mathrm{fd}}+\left(4 f_{1}^{u}+f_{1}^{d}+f_{1}^{\bar{d}}\right) \otimes D_{1}^{\mathrm{dd}}+f_{1}^{s} \otimes D_{1}^{\mathrm{f}^{\prime}}+f_{1}^{\bar{s}} \otimes D_{1}^{\mathrm{d}^{\prime}}, \\
& F_{U U, T}^{n / K^{+}}\left(x, z, P_{h \perp}^{2}\right)=4 f_{1}^{d} \otimes D_{1}^{\mathrm{fd}}+\left(4 f_{1}^{\bar{d}}+f_{1}^{u}+f_{1}^{\bar{u}}\right) \otimes D_{1}^{\mathrm{dd}}+f_{1}^{\bar{s}} \otimes D_{1}^{\mathrm{f}^{\prime}}+f_{1}^{s} \otimes D_{1}^{\mathrm{d}^{\prime}}, \\
& F_{U U / T}^{n / K^{-}}\left(x, z, P_{h \perp}^{2}\right)=4 f_{1}^{\bar{d}} \otimes D_{1}^{\mathrm{fd}}+\left(4 f_{1}^{d}+f_{1}^{u}+f_{1}^{\bar{u}}\right) \otimes D_{1}^{\mathrm{dd}}+f_{1}^{s} \otimes D_{1}^{\mathrm{f}^{\prime}}+f_{1}^{\bar{s}} \otimes D_{1}^{\mathrm{d}^{\prime}}
\end{aligned}
$$

Valence and pions only

$$
\begin{aligned}
& F_{U U, T}^{p / \pi^{+}}\left(x, z, P_{h \perp}^{2}\right)=4 f_{1}^{u} \otimes D_{1}^{\mathrm{f}}+f_{1}^{d} \otimes D_{1}^{\mathrm{d}}, \\
& F_{U U, T}^{p / \pi^{-}}\left(x, z, P_{h \perp}^{2}\right)=f_{1}^{d} \otimes D_{1}^{\mathrm{f}}+4 f_{1}^{u} \otimes D_{1}^{\mathrm{d}}, \\
& F_{U U, T}^{n / \pi^{+}}\left(x, z, P_{h \perp}^{2}\right)=4 f_{1}^{d} \otimes D_{1}^{\mathrm{f}}+f_{1}^{u} \otimes D_{1}^{\mathrm{d}}, \\
& F_{U U, T}^{n / \pi^{-}}\left(x, z, P_{h \perp}^{2}\right)=f_{1}^{u} \otimes D_{1}^{\mathrm{f}}+4 f_{1}^{d} \otimes D_{1}^{\mathrm{d}}
\end{aligned}
$$

Gaussian ansatz

$$
\begin{gathered}
f_{1}^{a}\left(x, p_{T}^{2}\right)=\frac{f_{1}^{a}(x)}{\pi \rho_{a}^{2}} e^{-\boldsymbol{p}_{T}^{2} / \rho_{a}^{2}}, \quad D_{1}^{a}\left(z, k_{T}^{2}\right)=\frac{D_{1}^{a}(z)}{\pi \sigma_{a}^{2}} e^{-z^{2} \boldsymbol{k}_{T}^{2} / \sigma_{a}^{2}} \\
f_{1}^{a} \otimes D_{1}^{a}=\frac{1}{\pi\left(z^{2} \rho_{a}^{2}+\sigma_{a}^{2}\right)} e^{-\boldsymbol{P}_{h \perp}^{2} /\left(z^{2} \rho_{a}^{2}+\sigma_{a}^{2}\right)}
\end{gathered}
$$

With Gaussian soft factor

$$
f_{1}^{a} \otimes D_{1}^{a}=\frac{1}{\pi\left(z^{2} \rho_{a}^{2}+\sigma_{a}^{2}+\tau^{2}\right)} e^{-P_{h \perp}^{2} /\left(z^{2} \rho_{a}^{2}+\sigma_{a}^{2}+\tau^{2}\right)}
$$

Interesting ratio

$$
\begin{aligned}
& \sigma_{\mathrm{f}}^{2}=\sigma_{\mathrm{d}}^{2}=0.3 \mathrm{GeV}^{2} \\
& f_{1}^{u} / f_{1}^{d} \approx 0.25 \\
& D_{1}^{\mathrm{d}} / D_{1}^{\mathrm{f}} \approx 0.40
\end{aligned}
$$

Hall-C results

JLab Hall C, Mkrtchyan et al., PLB665 (08)

