
Preliminary plan

1.Introduction

2.Inclusive and semi-inclusive DIS (structure functions)

Basics of collinear PDFs at tree level (definition, gauge link)

3.Basics of collinear PDFs (interpretation)

Basics of TMDs at tree level (definition, gauge link, interpretation)

4.Basics of factorization

Basics of TMD evolution

• Phenomenology of unpolarized SIDIS

• Phenomenology of polarized SIDIS
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Next lecture
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Quick review of last lecture
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TMD factorization

Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)

TMD PDF TMD FF Soft factorHard part
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High and low transverse momentum
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SIDIS once again

y

z

x

hadron plane

lepton plane
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Q = photon virtuality
M = hadron mass

Ph⊥ = hadron transverse momentum q2
T ≈ P 2

h⊥/z2
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Low and high transverse momentum

Low

q2
T ! Q2

M2 Q2
q2
T

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)
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TMD factorization

Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)

q

P

h

FUU,T (x, z, P 2
h⊥, Q2) = C′

[
f1D1

]

= H(Q2, µ2, ζ, ζh)
∫

d2pT d2kT d2lT δ(2)
(
pT − kT + lT − P h⊥/z

)

x
∑

a

e2
a fa

1 (x, p2
T , µ2, ζ) Da

1(z, k2
T , µ2, ζh)U(l2T , µ2, ζζh)

Thursday, May 14, 2009



Low and high transverse momentum

High

M2 ! q2
T

M2 Q2
q2
T
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Collinear factorization
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Low and high transverse momentum

Low High

q2
T ! Q2 M2 ! q2

T

M2 Q2

Intermediate

q2
T

M2 ! q2
T ! Q2
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Matching

M2 Q2
q2
T

Must match!

The leading high-qT part is just the “tail” of the leading low-qT part

A

q2
T

FUU,T

Collins, Soper, Sterman, NPB250 (85)
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Low and high transverse momentum

Low High

q2
T ! Q2 M2 ! q2

T

M2 Q2

Intermediate

q2
T

M2 ! q2
T ! Q2

tail of TMDs,
calculable with pQCD

nonperturbative 
part of TMDs
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Perturbative corrections to TMDs

fq
1 (x, p2

T ) =
αs

2π2

1
p2

T

[
L(η−1)

2
fq
1 (x)− CF fq

1 (x) +
(
Pqq ⊗ fq

1 + Pqg ⊗ fg
1

)
(x)

]
,

used in addition to the well-known observable 〈〈FLL 〉〉 for disentangling the contributions

from different quark and antiquark flavors and from the gluon.

8. From low to intermediate qT : explicit calculation

In this section we compute the high-transverse-momentum tails of the quark distributions

in (5.44) and of the analogous fragmentation functions. These are the functions which

appear at lowest order in the 1/pT expansion of section 5.3 and are hence expressed in

terms of collinear functions of twist two. While in section 6 we identified observables

whose power behavior agrees in the low- and high-qT calculations, we will then be able

to check for selected structure functions whether agreement is also found for their explicit

expressions.

8.1 High-pT tails of distribution functions

Let us begin with the quark distribution functions. We work in the original scheme of

Collins and Soper [20], using a spacelike axial gauge with the singularities of the gluon

propagator regulated by the principal value prescription. The only Feynman diagrams

to be evaluated are then those depicted in Fig. 5a and b. For a comparison with the

calculation in Feynman gauge, we refer to appendix A.

p p

P

(b)

l

P

(a)

P

l

Φq Φg
µν

Figure 5: Diagrams for the calculation of the leading high-pT behavior of the quark-quark
correlator Φ(x, pT ) in axial gauge A · v = 0.

The contribution of the quark-to-quark term shown in Fig. 5a reads

Φq(x, pT )
∣∣∣
(5a)

=
4παs

(2π)3
CF

∫
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∫
dl+ δ
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2

(x
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)
γµ

p/

p2

∣∣∣∣∣
l−=0, lT =0T

, (8.1)

where it is understood that p+ = xP+ and l+ = p+/x̂. As explained in section 5.3, the

restriction to leading order in 1/pT allows us to set l− and lT to zero when calculating the

hard-scattering subprocess, and to retain only the twist-two part Φq
2(x/x̂) of the collinear

quark-quark correlator at the bottom of the graph. The gluon polarization sum in A ·v = 0

gauge is given by

dµν(q; v) = −gµν +
qµvν + qνvµ

q ·v
−

qµqν

(q ·v)2
v2 , (8.2)

– 49 –
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where

DGLAP splitting
 functions

Large log, 
needs resummation
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TMD factorization: b space

collinear PDF and FF calculable with pQCD nonperturbative 
part of TMDs

High 
(fixed-order pQCD)

Intermediate
 (resummation)

Low 
(nonpert.)
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Sudakov form factor
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Leading-log formula

Ellis, Veseli, NPB 511 (98)

S(q2
T , Q2) = −
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Part 5: Unpolarized Phenomenolgy
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Experimental access

dσ
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T

∼
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annihila5on
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Some studies in Drell-Yan
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Available studies

of each fit, Figs. 1–5 compare theory calculations for the

DWS-G, LY-G, and BLNY parametrizations to each data set.

We emphasize again that the new LY-G parametrization pre-

sented in Table III was obtained by applying the conven-

tional global fitting procedure to the enlarged data set listed

in Tables I and II. In contrast, the original LY fit in Ref. !10"
was obtained by first fitting the g2 parameter using the CDF-

FIG. 2. Comparison to the E605 data for the process p!Cu

→#!#"!X at !S#38.8 GeV. The data are the published experi-
mental values. The curves are the results of the fits multiplied by the

best-fit values of 1/Nf it given in Table III.

FIG. 3. Comparison to the E288 data for the process p!Cu

→#!#"!X at !S#27.4 GeV. The data are the published experi-
mental values. The curves are the results of the fits and are multi-

plied by the best-fit values of 1/Nf it given in Table III.

FIG. 4. Comparison to the DO” -Z run-1 data. The data are the
published experimental values. The curves are the results of the fits

and are multiplied by the best-fit values of 1/Nf it given in Table III.

FIG. 5. Comparison to the CDF-Z run-1 data. The data are the

published experimental values. The curves are the results of the fits

and are multiplied by the best-fit value of 1/Nf it given in Table III.

FERMILAB TEVATRON RUN-1 Z BOSON DATA AND . . . PHYSICAL REVIEW D 67, 073016 $2003%

073016-5
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Landry, Brock, Nadolsky, Yuan, 
PRD67 (03)

Gaussians 
+ kT resumma5on
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FIG. 2 (color online). Invariant differential cross section for
the Drell-Yan process at

!!!

s
p ’ 23:8 GeV and fixed rapidity y !

0:21, as a function of the transverse momentum of the lepton
pair qT and averaged over different invariant mass bins (see the
legend). The parametrization MRST01 [25] for the unpolarized
parton distributions is used, with 1=! ! 0:8 GeV=c. Curves
are rescaled by a fixed K-factor, K ! 1:8. Data are from [27].
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FIG. 3 (color online). Invariant differential cross section for
the Drell-Yan process at

!!!

s
p ’ 27:4 GeV and fixed rapidity y !

0:03, as a function of the transverse momentum of the lepton
pair qT and averaged over different invariant mass bins (see the
legend). The parametrization MRST01 [25] for the unpolarized
parton distributions is used, with 1=! ! 0:9 GeV=c. Curves
are rescaled by a fixed K-factor, K ! 1:6. Data are from [27].
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s
p ’ 38:8 GeV and fixed xF ! 0:1, as

a function of the transverse momentum of the lepton pair qT
and averaged over different invariant mass bins (see the
legend). The parametrization MRST01 [25] for the unpolarized
parton distributions is used, with 1=! ! 0:95 GeV=c. Curves
are rescaled by a fixed K-factor, K ! 1:6. Data are from [28].
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!!!

s
p ! 62 GeV, as a function of the transverse

momentum of the lepton pair qT and averaged over the invari-
ant mass bin 5 GeV<M< 8 GeV and over the Feynman
variable bin "0:1< xF < 0:8 (xF ! 2qL=
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s
p

). The parametri-
zation MRST01 [25] for the unpolarized parton distributions is
used, with 1=! ! 1:0 GeV=c. The theoretical curve is rescaled
by a fixed K-factor, K ! 1:5. Data are from [29].
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D’Alesio, Murgia, PRD70 (04)

Gaussians
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Example of resummation effects

dσ

dq2
T

qT

Q = 5GeV

Q = 10GeV

Gaussian only

√
s = 50GeV

Gaussian +
resumma5on
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Nonperturbative part

•In b space

Brock, Landry, Nadolsky, Yuan, PRD67 (03) 

111 data points
(Drell-Yan)

SNP = − b2

〈b2〉
1

〈b2〉 = 0.21 + 0.68 log
(

Q

3.2

)
− 0.13 log (100xAxB)

of each fit, Figs. 1–5 compare theory calculations for the

DWS-G, LY-G, and BLNY parametrizations to each data set.

We emphasize again that the new LY-G parametrization pre-

sented in Table III was obtained by applying the conven-

tional global fitting procedure to the enlarged data set listed

in Tables I and II. In contrast, the original LY fit in Ref. !10"
was obtained by first fitting the g2 parameter using the CDF-

FIG. 2. Comparison to the E605 data for the process p!Cu

→#!#"!X at !S#38.8 GeV. The data are the published experi-
mental values. The curves are the results of the fits multiplied by the

best-fit values of 1/Nf it given in Table III.

FIG. 3. Comparison to the E288 data for the process p!Cu

→#!#"!X at !S#27.4 GeV. The data are the published experi-
mental values. The curves are the results of the fits and are multi-

plied by the best-fit values of 1/Nf it given in Table III.

FIG. 4. Comparison to the DO” -Z run-1 data. The data are the
published experimental values. The curves are the results of the fits

and are multiplied by the best-fit values of 1/Nf it given in Table III.

FIG. 5. Comparison to the CDF-Z run-1 data. The data are the

published experimental values. The curves are the results of the fits

and are multiplied by the best-fit value of 1/Nf it given in Table III.

FERMILAB TEVATRON RUN-1 Z BOSON DATA AND . . . PHYSICAL REVIEW D 67, 073016 $2003%
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bmax = 0.5 GeV−1
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Nonperturbative part

Kulesza, Stirling, JHEP  12 (03)

Q

•In b space

SNP = − b2

〈b2〉
1
〈b2〉 = 0.12 + 0.22 log

(
Q

3.2

)
+ 0.29 log

( √
s

19.4

)

0 2 4 6 8 10 12 14
0.0

0.1

0.2

0.3

0.4

0.5

0.6 √
s = 27.4

Note: there should 
be a factor 4 

between 1/b and kT

1/〈b2〉
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Nonperturbative part

Kulesza, Stirling, JHEP  12 (03)

〈q2
T 〉

Q

•In kT space

SNP = − q2
T

〈q2
T 〉

〈q2
T 〉 = 0.20 + 0.95 log

(
Q

3.2

)
+ 1.56 log

( √
s

19.4

)

√
s = 27.4

0 2 4 6 8 10 12 14
0.0

0.5

1.0

1.5

2.0

2.5 √
s = 27.4
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Unpolarized SIDIS
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Unpolarized SIDIS

dσ

dx dy dφS dz dφh dP 2
h⊥

=
α2

x y Q2

y2

2 (1− ε)

{
FUU,T + ε FUU,L +

√
2 ε(1 + ε) cos φh F cos φh

UU + ε cos(2φh) F cos 2φh

UU

}
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Azimuth-independent pieces
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Convolution

f ⊗D = xB

∫
d2pT d2kT δ(2)

(
pT − kT − P h⊥/z

)
fa(xB , p2

T ) Da(z, k2
T )

FUU,T =
∑

a

e2
afa

1 ⊗Da
1 , FUU,L = O

(
M2

Q2
,
P 2

h⊥
Q2

)

f ⊗D = xB

∫
d2pT d2kT δ(2)

(
pT − kT − P h⊥/z + lT

)
fa(xB , p2

T ) Da(z, k2
T )U(l2T )

Does not make a big difference if Gaussians are used
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Fragmentation functions

For the ”favored” functions

Du→π+

1 = Dd̄→π+

1 = Dd→π−

1 = Dū→π−

1 ,≡ Df
1

Du→K+

1 = Dū→K−

1 ,≡ Dfd
1

Ds̄→K+

1 = Ds→K−

1 ≡ Df′

1

for the “unfavored” functions

Dū→π+

1 = Dd→π+

1 = Dd̄→π−

1 = Du→π−

1 ≡ Dd
1 ,

Ds→π+

1 = Ds̄→π+

1 = Ds→π−

1 = Ds̄→π−

1 ≡ Ddf
1 ,

Dū→K+

1 = Dd̄→K+

1 = Dd→K+

1 = Dd̄→K−

1 = Dd→K−

1 = Du→K−

1 ≡ Ddd
1 ,

Ds→K+

1 = Ds̄→K−

1 ≡ Dd′

1 .
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Various combinations

F p/π+

UU,T (x, z, P 2
h⊥) =

(
4 fu

1 + f d̄
1

)
⊗Df

1 +
(
4 f ū

1 + fd
1

)
⊗Dd

1 +
(
fs
1 + f s̄

1

)
⊗Ddf

1 ,

F p/π−

UU,T (x, z, P 2
h⊥) =

(
4 f ū

1 + fd
1

)
⊗Df

1 +
(
4 fu

1 + f d̄
1

)
⊗Dd

1 +
(
fs
1 + f s̄

1

)
⊗Ddf

1 ,

Fn/π+

UU,T (x, z, P 2
h⊥) =

(
4 fd

1 + f ū
1

)
⊗Df

1 +
(
4 f d̄

1 + fu
1

)
⊗Dd

1 +
(
fs
1 + f s̄

1

)
⊗Ddf

1

Fn/π−

UU,T (x, z, P 2
h⊥) =

(
4 f d̄

1 + fu
1

)
⊗Df

1 +
(
4 fd

1 + f ū
1

)
⊗Dd

1 +
(
fs
1 + f s̄

1

)
⊗Ddf

1 ,

F p/K+

UU,T (x, z, P 2
h⊥) = 4 fu

1 ⊗Dfd
1 +

(
4 f ū

1 + fd
1 + f d̄

1

)
⊗Ddd

1 + f s̄
1 ⊗Df′

1 + fs
1 ⊗Dd′

1 ,

F p/K−

UU,T (x, z, P 2
h⊥) = 4 f ū

1 ⊗Dfd
1 +

(
4 fu

1 + fd
1 + f d̄

1

)
⊗Ddd

1 + fs
1 ⊗Df′

1 + f s̄
1 ⊗Dd′

1 ,

Fn/K+

UU,T (x, z, P 2
h⊥) = 4 fd

1 ⊗Dfd
1 +

(
4 f d̄

1 + fu
1 + f ū

1

)
⊗Ddd

1 + f s̄
1 ⊗Df′

1 + fs
1 ⊗Dd′

1 ,

Fn/K−

UU,T (x, z, P 2
h⊥) = 4 f d̄

1 ⊗Dfd
1 +

(
4 fd

1 + fu
1 + f ū

1

)
⊗Ddd

1 + fs
1 ⊗Df′

1 + f s̄
1 ⊗Dd′

1
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Valence and pions only

F p/π+

UU,T (x, z, P 2
h⊥) = 4 fu

1 ⊗Df
1 + fd

1 ⊗Dd
1 ,

F p/π−

UU,T (x, z, P 2
h⊥) = fd

1 ⊗Df
1 + 4 fu

1 ⊗Dd
1 ,

Fn/π+

UU,T (x, z, P 2
h⊥) = 4 fd

1 ⊗Df
1 + fu

1 ⊗Dd
1 ,

Fn/π−

UU,T (x, z, P 2
h⊥) = fu

1 ⊗Df
1 + 4 fd

1 ⊗Dd
1
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Gaussian ansatz

fa
1 (x, p2

T ) =
fa
1 (x)
πρ2

a

e−p2
T /ρ2

a , Da
1(z, k2

T ) =
Da

1(z)
πσ2

a

e−z2k2
T /σ2

a

fa
1 ⊗Da

1 =
1

π(z2ρ2
a + σ2

a)
e−P 2

h⊥/(z2ρ2
a+σ2

a)

fa
1 ⊗Da

1 =
1

π(z2ρ2
a + σ2

a + τ2)
e−P 2

h⊥/(z2ρ2
a+σ2

a+τ2)

With Gaussian soft factor

Thursday, May 14, 2009



Interesting ratio

0.0 0.2 0.4 0.6 0.8 1.00

1

2

3

4

5

PhT
2

p !Π"
n !Π"

Ρu
2$0.3, Ρd

2$0.1

Ρu
2$0.1, Ρd

2$0.3

σ2
f = σ2

d = 0.3 GeV2

fu
1 /fd

1 ≈ 0.25

Dd
1/Df

1 ≈ 0.40
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Hall-C results

FIG. 4: The P 2
t dependence of differential cross-sections per nucleus for π± production on hydrogen

(H) and deuterium (D) targets at 〈z〉=0.55 and 〈x〉=0.32. The solid lines show the result of the

seven-parameter fit described in the text. The error bars are statistical only. Systematic errors

are typically 4% (relative, see text for details). The average value of cos(φ) varies with P 2
t (see

Table 1.

(see Fig. 1). We assume further that sea quarks are negligible (typical global fits show less

than 10% contributions at x = 0.3). To make the problem tractable, we take only the

leading order terms in (kt/Q), which was shown to be a reasonable approximation for small

to moderate Pt in Ref. [6]. The simple model can then be written as:

σπ+
p = C[4c1(Pt)e−b+u P 2

t + (d/u)(D−/D+)c2(Pt)e−b−
d

P 2
t ]

σπ−
p = C[4(D−/D+)c3(Pt)e−b−u P 2

t + (d/u)c4(Pt)e−b+
d

P 2
t ]

σπ+
n = C[4(d/u)c4(Pt)e−b+

d
P 2

t + (D−/D+)c3(Pt)e−b−u P 2
t ]

σπ−
n = C[4(d/u)(D−/D+)c2(Pt)e−b−

d
P 2

t + c1(Pt)e−b+u P 2
t ]

(4)

where C is an arbitrary normalization factor, and the inverse of the total widths for each

9

JLab Hall C, Mkrtchyan et al., PLB665 (08)

Thursday, May 14, 2009


