Preliminary plan

1.Introduction

2. Inclusive and semi-inclusive DIS (structure functions)

Basics of collinear PDFs at tree level (definition, gauge link)

3.Basics of collinear PDFs (interpretation)

Basics of TMDs at tree level (definition, gauge link, interpretation)

4. Basics of factorization

Basics of TMD evolution

- Phenomenology of unpolarized SIDIS
- Phenomenology of polarized SIDIS

Next lecture

• May 27, 12:00 PM in F113

Quick review of last lecture

TMD factorization

Collins, Soper, NPB 193 (81) Ji, Ma, Yuan, PRD 71 (05)

High and low transverse momentum

SIDIS once again

- Q = photon virtuality
- M = hadron mass
- $P_{h\perp}$ = hadron transverse momentum

 $q_T^2 \approx P_{h\perp}^2/z^2$

Low and high transverse momentum

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)

TMD factorization

$$\begin{aligned} F_{UU,T}(x, z, P_{h\perp}^2, Q^2) &= \mathcal{C}'[f_1 D_1] \\ &= H(Q^2, \mu^2, \zeta, \zeta_h) \int d^2 \boldsymbol{p}_T \, d^2 \boldsymbol{k}_T \, d^2 \boldsymbol{l}_T \, \delta^{(2)} \left(\boldsymbol{p}_T - \boldsymbol{k}_T + \boldsymbol{l}_T - \boldsymbol{P}_{h\perp} / z \right) \\ &\quad x \sum_a e_a^2 \, f_1^a(x, p_T^2, \mu^2, \zeta) \, D_1^a(z, k_T^2, \mu^2, \zeta_h) \, U(l_T^2, \mu^2, \zeta\zeta_h) \end{aligned}$$

Low and high transverse momentum

Collinear factorization

Low and high transverse momentum

Matching

The leading high- q_T part is just the "tail" of the leading low- q_T part

Collins, Soper, Sterman, NPB250 (85)

Low and high transverse momentum

Perturbative corrections to TMDs

TMD factorization: b space

Leading-log formula

Ellis, Veseli, NPB 511 (98)

$$F_{UU,T}(x,z,q_T^2,Q^2) = x \sum_a e_a^2 \frac{d}{dq_T^2} \left[f_1^a(x;[q_T^2]) D_1^a(z;[q_T^2]) e^{-S} \left(1 - e^{-S_{NP}}\right) \right]$$

$$S(q_T^2, Q^2) = -\int_{q_T^2}^{Q^2} \frac{d\mu^2}{\mu^2} \frac{\alpha_S(\mu^2)}{2\pi} 2C_F \log \frac{Q^2}{\mu^2}$$

$$\alpha_s(\mu^2) = \frac{4\pi}{\beta_0 \log(\mu^2/\Lambda^2)}$$

Part 5: Unpolarized Phenomenolgy

Experimental access

$$\begin{array}{ll} \mbox{Drell-Yan} & \displaystyle \frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 \, f_1^q(x,p_T^2) \otimes f_1^{\bar{q}}(\bar{x},\bar{p}_T^2) \\ \\ \mbox{Semi-inclusive} & \displaystyle \frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 \, f_1^q(x,p_T^2) \otimes D_1^q(z,k_T^2) \\ \\ \mbox{Bls} & \displaystyle \frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 \, D_1^q(z,k_T^2) \otimes D_1^{\bar{q}}(\bar{z},\bar{k}_T^2) \\ \\ \mbox{electron-positron} & \displaystyle \frac{d\sigma}{dq_T^2} \sim \sum_q e_q^2 \, D_1^q(z,k_T^2) \otimes D_1^{\bar{q}}(\bar{z},\bar{k}_T^2) \\ \end{array}$$

Some studies in Drell-Yan

Available studies

Thursday, May 14, 2009

Example of resummation effects

Nonperturbative part

• In *b* space

$$S_{NP} = -\frac{b^2}{\langle b^2 \rangle}$$
$$\frac{1}{\langle b^2 \rangle} = 0.21 + 0.68 \log\left(\frac{Q}{3.2}\right) - 0.13 \log(100x_A x_B) \qquad b_{\text{max}} = 0.5 \text{ GeV}^{-1}$$

111 data points (Drell-Yan)

Brock, Landry, Nadolsky, Yuan, PRD67 (03)

Nonperturbative part

• In *b* space

Kulesza, Stirling, JHEP 12 (03)

$$S_{NP} = -\frac{b^2}{\langle b^2 \rangle}$$
$$\frac{1}{\langle b^2 \rangle} = 0.12 + 0.22 \log\left(\frac{Q}{3.2}\right) + 0.29 \log\left(\frac{\sqrt{s}}{19.4}\right)$$

Note: there should be a factor 4 between 1/b and k_T

Nonperturbative part

• In k_T space

Kulesza, Stirling, JHEP 12 (03)

$$S_{NP} = -\frac{q_T^2}{\langle q_T^2 \rangle}$$
$$\langle q_T^2 \rangle = 0.20 + 0.95 \log\left(\frac{Q}{3.2}\right) + 1.56 \log\left(\frac{\sqrt{s}}{19.4}\right)$$

Unpolarized SIDIS

Unpolarized SIDIS

$$\frac{d\sigma}{dx \, dy \, d\phi_S \, dz \, d\phi_h \, dP_{h\perp}^2} = \frac{\alpha^2}{x \, y \, Q^2} \, \frac{y^2}{2 \, (1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon \, F_{UU,L} + \sqrt{2 \, \varepsilon (1+\varepsilon)} \, \cos \phi_h \, F_{UU}^{\cos \phi_h} + \varepsilon \cos(2\phi_h) \, F_{UU}^{\cos 2\phi_h} \right\}$$

Azimuth-independent pieces

Convolution

$$F_{UU,T} = \sum_{a} e_a^2 f_1^a \otimes D_1^a, \qquad F_{UU,L} = \mathcal{O}\left(\frac{M^2}{Q^2}, \frac{P_{h\perp}^2}{Q^2}\right)$$

$$f \otimes D = x_B \, \int d^2 \mathbf{p}_T \, d^2 \mathbf{k}_T \, \delta^{(2)} \left(\mathbf{p}_T - \mathbf{k}_T - \mathbf{P}_{h\perp} / z \right) f^a(x_B, p_T^2) \, D^a(z, k_T^2)$$

$$f \otimes D = x_B \int d^2 \boldsymbol{p}_T \, d^2 \boldsymbol{k}_T \, \delta^{(2)} \left(\boldsymbol{p}_T - \boldsymbol{k}_T - \boldsymbol{P}_{h\perp} / z + \boldsymbol{l}_T \right) f^a(x_B, p_T^2) \, D^a(z, k_T^2) \, U(l_T^2)$$

Does not make a big difference if Gaussians are used

For the "favored" functions

$$D_1^{u \to \pi^+} = D_1^{\bar{d} \to \pi^+} = D_1^{d \to \pi^-} = D_1^{\bar{u} \to \pi^-}, \equiv D_1^{f_1}$$
$$D_1^{u \to K^+} = D_1^{\bar{u} \to K^-}, \equiv D_1^{f_1}$$
$$D_1^{\bar{s} \to K^+} = D_1^{s \to K^-} \equiv D_1^{f'_1}$$

for the "unfavored" functions

$$\begin{split} D_1^{\bar{u} \to \pi^+} &= D_1^{d \to \pi^+} = D_1^{\bar{d} \to \pi^-} = D_1^{u \to \pi^-} \equiv D_1^{d}, \\ D_1^{s \to \pi^+} &= D_1^{\bar{s} \to \pi^+} = D_1^{s \to \pi^-} = D_1^{\bar{s} \to \pi^-} \equiv D_1^{df}, \\ D_1^{\bar{u} \to K^+} &= D_1^{\bar{d} \to K^+} = D_1^{d \to K^-} = D_1^{d \to K^-} = D_1^{u \to K^-} \equiv D_1^{dd}, \\ D_1^{s \to K^+} &= D_1^{\bar{s} \to K^-} \equiv D_1^{d'}. \end{split}$$

$$\begin{split} F_{UU,T}^{p/\pi^+}(x,z,P_{h\perp}^2) &= \left(4\,f_1^u + f_1^{\bar{d}}\right) \otimes D_1^{\rm f} + \left(4\,f_1^{\bar{u}} + f_1^d\right) \otimes D_1^{\rm d} + \left(f_1^s + f_1^{\bar{s}}\right) \otimes D_1^{\rm df}, \\ F_{UU,T}^{p/\pi^-}(x,z,P_{h\perp}^2) &= \left(4\,f_1^{\bar{u}} + f_1^{\bar{u}}\right) \otimes D_1^{\rm f} + \left(4\,f_1^u + f_1^{\bar{d}}\right) \otimes D_1^{\rm d} + \left(f_1^s + f_1^{\bar{s}}\right) \otimes D_1^{\rm df}, \\ F_{UU,T}^{n/\pi^+}(x,z,P_{h\perp}^2) &= \left(4\,f_1^d + f_1^{\bar{u}}\right) \otimes D_1^{\rm f} + \left(4\,f_1^d + f_1^{\bar{u}}\right) \otimes D_1^{\rm d} + \left(f_1^s + f_1^{\bar{s}}\right) \otimes D_1^{\rm df}, \\ F_{UU,T}^{n/\pi^-}(x,z,P_{h\perp}^2) &= \left(4\,f_1^{\bar{d}} + f_1^u\right) \otimes D_1^{\rm f} + \left(4\,f_1^d + f_1^{\bar{u}}\right) \otimes D_1^{\rm d} + \left(f_1^s + f_1^{\bar{s}}\right) \otimes D_1^{\rm df}, \\ F_{UU,T}^{p/K^+}(x,z,P_{h\perp}^2) &= 4\,f_1^u \otimes D_1^{\rm fd} + \left(4\,f_1^{\bar{u}} + f_1^d + f_1^{\bar{d}}\right) \otimes D_1^{\rm dd} + f_1^{\bar{s}} \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{p/K^-}(x,z,P_{h\perp}^2) &= 4\,f_1^{\bar{u}} \otimes D_1^{\rm fd} + \left(4\,f_1^u + f_1^d + f_1^{\bar{d}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^+}(x,z,P_{h\perp}^2) &= 4\,f_1^d \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^+}(x,z,P_{h\perp}^2) &= 4\,f_1^d \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^-}(x,z,P_{h\perp}^2) &= 4\,f_1^{\bar{d}} \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^-}(x,z,P_{h\perp}^2) &= 4\,f_1^{\bar{d}} \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^-}(x,z,P_{h\perp}^2) &= 4\,f_1^{\bar{d}} \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^-}(x,z,P_{h\perp}^2) &= 4\,f_1^{\bar{d}} \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^-}(x,z,P_{h\perp}^2) &= 4\,f_1^{\bar{d}} \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes D_1^{\rm dd} + f_1^s \otimes D_1^{f'} + f_1^s \otimes D_1^{d'}, \\ F_{UU,T}^{n/K^-}(x,z,P_{h\perp}^2) &= 4\,f_1^{\bar{d}} \otimes D_1^{\rm fd} + \left(4\,f_1^d + f_1^u + f_1^{\bar{u}}\right) \otimes$$

Valence and pions only

$$F_{UU,T}^{p/\pi^{+}}(x, z, P_{h\perp}^{2}) = 4 f_{1}^{u} \otimes D_{1}^{f} + f_{1}^{d} \otimes D_{1}^{d},$$

$$F_{UU,T}^{p/\pi^{-}}(x, z, P_{h\perp}^{2}) = f_{1}^{d} \otimes D_{1}^{f} + 4 f_{1}^{u} \otimes D_{1}^{d},$$

$$F_{UU,T}^{n/\pi^{+}}(x, z, P_{h\perp}^{2}) = 4 f_{1}^{d} \otimes D_{1}^{f} + f_{1}^{u} \otimes D_{1}^{d},$$

$$F_{UU,T}^{n/\pi^{-}}(x, z, P_{h\perp}^{2}) = f_{1}^{u} \otimes D_{1}^{f} + 4 f_{1}^{d} \otimes D_{1}^{d},$$

Gaussian ansatz

$$f_1^a(x, p_T^2) = \frac{f_1^a(x)}{\pi \rho_a^2} e^{-\mathbf{p}_T^2/\rho_a^2}, \qquad D_1^a(z, k_T^2) = \frac{D_1^a(z)}{\pi \sigma_a^2} e^{-z^2 \mathbf{k}_T^2/\sigma_a^2}$$

$$f_1^a \otimes D_1^a = \frac{1}{\pi (z^2 \rho_a^2 + \sigma_a^2)} e^{-\mathbf{P}_{h\perp}^2 / (z^2 \rho_a^2 + \sigma_a^2)}$$

With Gaussian soft factor

$$f_1^a \otimes D_1^a = \frac{1}{\pi (z^2 \rho_a^2 + \sigma_a^2 + \tau^2)} e^{-\mathbf{P}_{h\perp}^2 / (z^2 \rho_a^2 + \sigma_a^2 + \tau^2)}$$

Interesting ratio

Hall-C results

JLab Hall C, Mkrtchyan et al., PLB665 (08)