
Preliminary plan

1.Introduction

2.Inclusive and semi-inclusive DIS (structure functions)

Basics of collinear PDFs at tree level (definition, gauge link)

3.Basics of collinear PDFs (interpretation)

Basics of TMDs at tree level (definition, gauge link, interpretation)

• Basics of factorization

• Basics of TMD evolution

• Phenomenology of unpolarized SIDIS

• Phenomenology of polarized SIDIS
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Next lectures

• Apr 29, 3:00 PM in L104
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Results of last lecture
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18 structure functions

see e.g. AB, Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)
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Starting formula (tree level)

2MWµν(q, P, S, Ph) = 2zh I
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TMDs and their probabilistic interpretation

TMDs in black survive transverse‐momentum integra6on
TMDs in red are T‐odd

quark pol.

U L T
nu

cl
eo

n
po

l.
U f1 h⊥1

L g1L h⊥1L

T f⊥1T g1T h1, h⊥1T

Twist-2 TMDs
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TMDs and their probabilistic interpretation

f1 =

g1 =

h1 =

f⊥1T =

h⊥1 =

h⊥1T =

h⊥1L =

g1T =
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Unpolarized sector
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(
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Essential ideas on factorization
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Inclusive DIS

P

q

F (x, Q2) = x
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Inclusive DIS: tree level
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One-loop level

These diagrams have all sorts of divergences:
★ultraviolet
★collinear (if gluon and quark mass → 0)
★soft (if gluon mass → 0)

(v1) (v2) (v3)

(r1)

(r3)

(r3)(r2)

(r4)
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A general rule

If you integrate over everything (total cross 
section), all divergences disappear

The more you integrate, the more you cancel divergences. 
For instance, the total cross section is free of any divergence 
(infrared safe)
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Cancellations in inclusive DIS

All soft divergences disappear in inclusive DIS, thanks to 
cancellations between real and virtual diagrams
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Collinear divergences

(a) (b)

(d)(c)

p+

∫
d2lT dl+

1
l2T

∫
d(2+ε)lT dl+

1
l2T

dimensional mass cutoff

➡regularize and include into PDFs

lT
l+ = (1− x)p+

∫
d2lT dl+

1
l2T + λ2

∫

λ
d2lT dl+

1
l2T

Thursday, April 16, 2009



Factorization scale

P

q

F (x, Q2) = x
∑
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x

dx̂
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F

)
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(
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)

µF

The factorization scale determines how much we put 
in the PDF and how much in the hard scattering

∫ µF

λ
d2lT dl+

1
l2T
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Factorization scale

P

q

F (x, Q2) = x
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, µ2
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)
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(
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µF

The factorization scale determines how much we put 
in the PDF and how much in the hard scattering

∫ µF

λ
d2lT dl+

1
l2T
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Factorization theorem

P

q

F (x, Q2) = x
∑

a

∫ 1

x

dx̂

x̂
fa

(x

x̂
, µ2

F

)
Ha

(
x̂, ln

µ2
F

Q2

)

Collins, Soper, Sterman (1988), hep-ph/0409313 

See: Handbook of  Perturbative QCD, CTEQ, http://www.phys.psu.edu/~cteq/
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Evolution equations

• The factorization scale μF is put in “by hand” to separate 
perturbative from nonperturbative

• The final result for the structure function cannot depend on μF

• The dependence of the PDFs on μF can be computed (DGLAP 
evolution equations) if μF >> ΛQCD

•The PDFs at a low scale are nonperturbative and have to be 
extracted from the experiments
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SIDIS integrated over transverse momentum
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analogous to theorems for Drell-Yan or e+e− annihilation, see previous references
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Integrated SIDIS: tree level
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Integrated SIDIS: twist 3
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Works also at twist 3
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Integrated SIDIS: problems at twist 4
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SIDIS at high transverse momentum
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x̂, ẑ, ln

µ2
F

Q2

)

Works also at twist 3
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SIDIS at high transverse momentum
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Starts at order αs
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Important messages

• Factorization theorems are the only rigorous way to define what are 
the objects we call “parton distribution functions”

• The intuitive idea, based on parton model and handbag diagram, of 
PDFs being probability densities is slightly modified by the 
factorization theorems.

• What is important is that the PDFs are nonperturbative objects, 
they describe the partonic structure of the nucleon, they can be 
extracted from experiments
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Factorization theorems

P

q

✔•Inclusive DIS
up to twist 4

• Integrated SIDIS
up to twist 3

• SIDIS at high transverse mom.
up to twist 3

• SIDIS at low transverse mom.

P

h

q

✔
✔

?
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TMD factorization: relevant literature	

• Collins, Soper, NPB 193 (81)

• Collins, Soper, Sterman, NPB 250 (85)

• Collins, Acta Phys. Polon. B34 (03)

• Ji, Ma, Yuan, PRD 71 (05)

• Collins, Rogers, Stasto, PRD 77 (08)

• Collins, arXiv:0808.2665 [hep-ph]

• Coming up at JLab: talks by F. Yuan (Apr 27) and A. Stasto (May 20)
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No cancellations

The problem is that soft divergences do not cancel anymore 
and a new class of divergences (light-cone or rapidity 
divergences) appear
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Regulate divergences

To regulate divergences we can use:

μ ultraviolet cutoff
m quark mass
λ gluon mass
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Light-cone divergences

To regulate these divergences,
we give a + component to v so that

dµν(l; v) = −gµν +
lµvν + lνvµ

l ·v − lµlν

(l ·v)2
v2

∫
d2lT dl+

1
l · v

=
∫

d2lT dl+
1
l+

v = v−n− +
2P+2

ζ2
n+
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Factorizing soft divergences

(v1) (v2) (v3)

μ ultraviolet cutoff
m quark mass
λ gluon mass

δ(1− xB)δ(1− zh)δ2(Ph⊥)
[
1 + 2

αsCF

4π

(
− ln

µ2

λ2
+ 3 ln

m2

λ2
− 4

)]

Soft divergence

Collinear divergence
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Factorizing soft divergences

μ ultraviolet cutoff
m quark mass
λ gluon mass

δ(1− xB)δ(1− zh)δ2(Ph⊥)
[
1 + 2

αsCF

4π

(
− ln

µ2

λ2
+ 3 ln

m2

λ2
− 4

)]

Soft divergence

Collinear divergence

= ⊗ ⊗⊗
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Factorizing soft divergences

= ⊗ ⊗⊗

= ⊗ ⊗ ⊗

Hard FF PDF Soft factor

the light-cone regulators determine what 
goes in the FF, PDFs, and SF 

Light-cone divergences appear
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TMD factorization

Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)

TMD PDF TMD FF Soft factorHard part

q

P

h

FUU,T (x, z, P 2
h⊥, Q2) = C′

[
f1D1

]

= H(Q2, µ2, ζ, ζh)
∫

d2pT d2kT d2lT δ(2)
(
pT − kT + lT − P h⊥/z

)

x
∑

a

e2
a fa

1 (x, p2
T , µ2, ζ) Da

1(z, k2
T , µ2, ζh)U(l2T , µ2, ζζh)
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TMD factorization

• TMD factorization at the one-loop level has been proven in the 
work of Ji, Yuan, and Ma, extending the earlier work of Collins, 
Soper, Sterman, etc.

• Factorization should work for SIDIS, Drell-Yan, and e+e− annihilation

• The extension to all order is probably just a conjecture

• Some subtleties have been pointed out by Collins, but I am not 
aware of any statement that says that the work of Ji, Yuan, and Ma 
is wrong
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TMD evolution

•The light-cone regulators are put in “by hand” to separate what 
belongs to PDFs, FFs, SF.

•The final result for the structure function cannot depend on the 
regulators

•The dependence on the light-cone regulators can be computed 
(Collins-Soper evolution equations) in the region where the 
transverse momentum is >> ΛQCD

•The component of the TMDs at small transverse momentum is 
nonperturbative and has to be extracted from the experiments

•Everything is done in b space
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TMD factorization: b space

collinear PDF and FF calculable with pQCD nonperturbative 
part of TMDs

High 
(fixed-order pQCD)

Intermediate
 (resummation)

Low 
(nonpert.)

FUU,T (x, z, b, Q2) = x
∑

a

e2
a

[
(f i

1 ⊗ Cia) (Caj ⊗Dj
1) e−Se−SNP

]

Sudakov form factor
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Evolution equations for TMDs

0.0 0.5 1.0 1.5 2.0 2.5 3.00.0

0.1

0.2

0.3

0.4

dΣ
dqT2

Q2"10 GeV2

Q2"100 GeV2
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High and low transverse momentum
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SIDIS once again

y

z

x

hadron plane

lepton plane

l′
l ST

Ph

Ph⊥
!h

!S

Q = photon virtuality
M = hadron mass

Ph⊥ = hadron transverse momentum q2
T ≈ P 2

h⊥/z2
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Low and high transverse momentum

Low

q2
T ! Q2

M2 Q2
q2
T

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)
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TMD factorization

Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)

q

P

h

FUU,T (x, z, P 2
h⊥, Q2) = C′

[
f1D1

]

= H(Q2, µ2, ζ, ζh)
∫

d2pT d2kT d2lT δ(2)
(
pT − kT + lT − P h⊥/z

)

x
∑

a

e2
a fa

1 (x, p2
T , µ2, ζ) Da

1(z, k2
T , µ2, ζh)U(l2T , µ2, ζζh)
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Low and high transverse momentum

High

M2 ! q2
T

M2 Q2
q2
T

Thursday, April 16, 2009



SIDIS at high transverse momentum

P

h

q

F (x, z,Q2) =
1

Q2z2
x

∑

a,b

∫ 1

x

dx̂

x̂

∫ 1

z

dẑ

ẑ
δ
( P 2

h⊥
Q2z2

− (1− x̂)(1− ẑ)
x̂ẑ

)

× fa
(x

x̂
, µ2

F

)
Db

(z

ẑ
, µ2

F

)
H ′

ab

(
x̂, ẑ, ln

µ2
F

Q2

)
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Example of high-transverse momentum result

FUU,T =
1
Q2

αs
(2πz)2

∑

a

xe2a

∫ 1

x

x̂

x̂

∫ 1

z

ẑ

ẑ
δ

(
q2T
Q2
− (1− x̂)(1− ẑ)

x̂ẑ

)

×
[
fa1

(x
x̂

)
Da1

(z
ẑ

)
C(γ∗q→qg)
UU,T + fa1

(x
x̂

)
Dg1

(z
ẑ

)
C(γ∗q→gq)
UU,T + fg1

(x
x̂

)
Da1

(z
ẑ

)
C(γ∗g→qq̄)
UU,T

]

(a) (c)(a′)

pbpa

q

pbpa pa pb

qq

(b) (c′)(b′)

pb

pa

q

pa

pb

pa

pbqq
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Low and high transverse momentum

Low High

q2
T ! Q2 M2 ! q2

T

M2 Q2

Intermediate

q2
T

M2 ! q2
T ! Q2
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Matching

M2 Q2
q2
T

Must match!

The leading high-qT part is just the “tail” of the leading low-qT part

A

q2
T

FUU,T

Collins, Soper, Sterman, NPB250 (85)
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Perturbative corrections to TMDs

fq
1 (x, p2

T ) =
αs

2π2

1
p2

T

[
L(η−1)

2
fq
1 (x)− CF fq

1 (x) +
(
Pqq ⊗ fq

1 + Pqg ⊗ fg
1

)
(x)

]
,

used in addition to the well-known observable 〈〈FLL 〉〉 for disentangling the contributions

from different quark and antiquark flavors and from the gluon.

8. From low to intermediate qT : explicit calculation

In this section we compute the high-transverse-momentum tails of the quark distributions

in (5.44) and of the analogous fragmentation functions. These are the functions which

appear at lowest order in the 1/pT expansion of section 5.3 and are hence expressed in

terms of collinear functions of twist two. While in section 6 we identified observables

whose power behavior agrees in the low- and high-qT calculations, we will then be able

to check for selected structure functions whether agreement is also found for their explicit

expressions.

8.1 High-pT tails of distribution functions

Let us begin with the quark distribution functions. We work in the original scheme of

Collins and Soper [20], using a spacelike axial gauge with the singularities of the gluon

propagator regulated by the principal value prescription. The only Feynman diagrams

to be evaluated are then those depicted in Fig. 5a and b. For a comparison with the

calculation in Feynman gauge, we refer to appendix A.

p p

P

(b)

l

P

(a)

P

l

Φq Φg
µν

Figure 5: Diagrams for the calculation of the leading high-pT behavior of the quark-quark
correlator Φ(x, pT ) in axial gauge A · v = 0.

The contribution of the quark-to-quark term shown in Fig. 5a reads

Φq(x, pT )
∣∣∣
(5a)

=
4παs

(2π)3
CF

∫
dp−

∫
dl+ δ

(
(l − p)2

)
θ(l+ − p+)

× dµν(l − p; v)
p/

p2
γν Φq

2

(x

x̂

)
γµ

p/

p2

∣∣∣∣∣
l−=0, lT =0T

, (8.1)

where it is understood that p+ = xP+ and l+ = p+/x̂. As explained in section 5.3, the

restriction to leading order in 1/pT allows us to set l− and lT to zero when calculating the

hard-scattering subprocess, and to retain only the twist-two part Φq
2(x/x̂) of the collinear

quark-quark correlator at the bottom of the graph. The gluon polarization sum in A ·v = 0

gauge is given by

dµν(q; v) = −gµν +
qµvν + qνvµ

q ·v
−

qµqν

(q ·v)2
v2 , (8.2)

– 49 –

FUU,T =
1
q2T

αs
2π2z2

∑

a

xe2a

[
fa1 (x)Da1(z)L

(
Q2

q2T

)
+ fa1 (x)

(
Da1 ⊗ Pqq +Dg1 ⊗ Pgq

)
(z)

+
(
Pqq ⊗ fa1 + Pqg ⊗ fg1

)
(x)Da1(z)

]

L

(
Q2

q2
T

)
= 2CF ln

Q2

q2
T

− 3CF
where

DGLAP splitting
 functions

Large log, 
needs resummation
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Other TMDs

xf⊥ ∼ 1
p2

T

αs F
[
f1

]
,

. . .

f⊥1T ∼
M2

p4
T

αs F
[
f⊥(1)
1T , . . .

]
,

. . .

xf⊥L ∼ 1
p2

T

α2
s F

[
g1

]
,

. . .

h⊥1T ∼
M2

p4
T

α2
s F

[
h1

]
,

. . . AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)
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Mismatches at twist 3

M2 Q2
q2
T

We are neglecting something that cannot be neglected...

A

q2
T
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Conclusions

• TMD factorization is proven, at least at the one-loop level

• There is a framework to study TMDs, including their evolution

• At the moment, this framework has been used since 1985, but only 
for unpolarized TMDs. Most recent work: Landry, Brock, Nadolsky, 
Yuan, PRD 67 (03)

• Everything else has been done at “tree-level” neglecting soft factor 
and evolution
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