Preliminary plan

1.Introduction
2.Inclusive and semi-inclusive DIS (structure functions)
Basics of collinear PDFs at tree level (definition, gauge link)
3.Basics of collinear PDFs (interpretation)
BaSICS of TMDs at tree IeveI (deflnltlon gauge Ilnk mterpretatlon)
Bas|cs of factonzatmn S —— T ————
. BaS|os of TMD evqutlon
Phenomenology of unpolad SIDIS I

e Phenomenology of polarized SIDIS
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Next lectures

e Apr 29, 3:00 PM in L104
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Results of last lecture
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18 structure functions
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see e.g. AB, Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)
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Starting formula (tree level)

OMWH (q,P, S, Py) = 22y, I[Tr(cp(xB, pr, S)V* Az, kT) 7”)}




TMDs and their probabilistic interpretation

quark pol.
U L T
é J1 hi
EB L giL hit
&é) fi7 | oir | k1, hip

Twist-2 TMDs

TMDs in black survive transverse-momentum integration
TMDs in red are T-odd
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TMDs and their probabilistic interpretation
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Unpolarized sector
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Essential ideas on factorization
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Inclusive DIS

e @)=2 3 [ 5§ 1 (Goi) m(em )
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Inclusive DIS: tree level
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One-loop level

r e

’ al
IR =

(v1) (v2) (v3)

hese diagrams have all sorts of divergences:
*ultraviolet
*collinear (if gluon and quark mass — 0)
*soft (if gluon mass — 0)
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A general rule

The more you integrate, the more you cancel divergences.
For instance, the total cross section is free of any divergence
(infrared safe)
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Cancellations in inclusive DIS

All soft divergences disappear in inclusive DIS, thanks to
cancellations between real and virtual diagrams
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Collinear divergences

1 , . .
/ d*lp dI* Z = reqularize and include into PDFs
/ dPT) 1 dit 1 / d?lr dlt - / d?lrdlt 1
12 I3+ A2 N 12

dimensional Mmass cutoftf
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Factorization scale

The factorization scale determines how much we put / e L dI* 1
in the PDF and how much in the hard scattering A 7
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Factorization scale

The factorization scale determines how much we put / e L dlt 1
In the PDF and how much in the hard scattering A

Thursday, April 16, 2009



Factorization theorem

2

F(z,Q?) —CEZ/ —fa’ A,,uF) Ha(i,lng)

P

Collins, Soper, Sterman (1988), hep-ph/0409313

See: Handbook of Perturbative QCD, CTEQ, http:/ /www.phys.psu.edu/~cteq/
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Evolution equations

e The factorization scale ur is put in “by hand” to separate
perturbative from nonperturbative

e The final result for the structure function cannot depend on ur

e The dependence of the PDFs on ur can be computed (DGLAP
evolution equations) if ur>> Aqcp

® The PDFs at a low scale are nonperturbative and have to be
extracted from the experiments
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SIDIS integrated over transverse momentum

F(x,z,Q%) —xZ/x da:/ ”,uF Db( ”uF) Hab(ajzlnc;)

==

9 "\

=

analogous to theorems for Drell-Yan or e*e~ annihilation, see previous references
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Integrated SIDIS: tree level

a S\ AVAVAV
P
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Integrated SIDIS: twist 3

1 g~ 1 g2 2
dx dz T z A
F(.CC,Z,QQ) — X Z/ g/ ?fa(gmu%‘) Db(gaﬂ%) Hab('xazalng)

a,b

q

=
-

P o

Works also at twist 3




Integrated SIDIS: problems at twist 4

1 74 1 32 2
dx dz x z ..
F(x,z,cf):xEj/ —:%/ = 1*(51%) D' (S0 Hab(x,z,ln—gi)

f QW
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SIDIS at high transverse momentum

x'zQ Q2Z2$Z/ dl’/ 532;2_ Al Z))
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Works also at twist 3




SIDIS at high transverse momentum

x'zQ Q2Z2$Z/ dl’/ 532;2_ Al Z))

x f (m ,u%) Db( ,LLF) H’b(az Z ln'u—F)

>

P

Starts at order «,




Important messages

e Factorization theorems are the only rigorous way to define what are
the objects we call “parton distribution functions”

* The intuitive idea, based on parton model and handbag diagram, of
PDFs being probability densities is slightly modified by the
factorization theorems.

e \What is important is that the PDFs are nonperturbative objects,
they describe the partonic structure of the nucleon, they can be
extracted from experiments
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Factorization theorems
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TMD factorization: relevant literature

e Collins, Soper, NPB 193 (81)

e Collins, Soper, Sterman, NPB 250 (85)

e Collins, Acta Phys. Polon. B34 (03)

e Ji, Ma, Yuan, PRD 71 (05)

e Collins, Rogers, Stasto, PRD 77 (08)

e Collins, arXiv:0808.2665 [hep-ph]

e Coming up at JLab: talks by F. Yuan (Apr 27) and A. Stasto (May 20)
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No cancellations

The problem is that soft divergences do not cancel anymore
and a new class of divergences (light-cone or rapidity
divergences) appear
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Regulate divergences

To regulate divergences we can use:

u ultraviolet cutoft
m quark mass
A gluon mass
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Light-cone divergences

1 1
2 + 2 +
d*lr dl T /ledl T

L L 1
wy (. — MV —

To regulate these divergences,
we give a + component to v so that

2PT?
S

V=70 n_ -+
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Factorizing soft divergences

o

\

) Soft divergence

A

a;Cr 12 m
5(1— 25)5(1 — 2,)0%(Pay ) [1 +222 (—m 3T - 4)}

AN

Collinear divergence

u ultraviolet cutoft
m quark mass
A gluon mass
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Factorizing soft divergences

B T s v

Soft divergence

A

a;Cr 12 m
5(1— 25)5(1 — 2,)0%(Pay ) [1 +222 (—m 3T - 4)}

AN

Collinear divergence

u ultraviolet cutoft
m quark mass
A gluon mass
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Factorizing soft divergences

\

the light-co
goes

e

N t

Ca

feg

e

FF

PDF Soft factor

BT h

Light-cone divergences appear

'
>
'
'
'

s

&

s determine what

DFs, and SF




TMD factorization

Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)

ya
L

Fuur(z,z, Py, Q%) =C'[fiD1]
= H(Q?, 112,¢, ) /deT PPkr 7 8 (pr — kr +1r — Py /2)

vy en fi(@,pr, 1%, Q) DY (2, kg, 12, ) U (17, 1%, (Cn)

Hard part
P TMD PDF TMD FF Soft factor
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TMD factorization

e TMD factorization at the one-loop level has been proven in the
work of Ji, Yuan, and Ma, extending the earlier work of Collins,
Soper, Sterman, etc.

e Factorization should work for SIDIS, Drell-Yan, and ete— annihilation
® The extension to all order is probably just a conjecture

e Some subtleties have been pointed out by Collins, but | am not

aware of any statement that says that the work of Ji, Yuan, and Ma
IS wrong
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TMD evolution

® The light-cone regulators are put in “by hand” to separate what
belongs to PDFs, FFs, Sk

® The final result for the structure function cannot depend on the
regulators

® [he dependence on the light-cone regulators can be computed
(Collins-Soper evolution equations) in the region where the
transverse momentum is >> Aqcp

® The component of the TMDs at small transverse momentum is
nonperturbative and has to be extracted from the experiments

® Everything is done in b space
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TMD factorization: b space
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Evolution equations for TMDs

do

d 2
0.4 e «
0.3:- Q2=10 GeV?
0.2

Q3%=100 GeV? |

Thursday, April 16, 2009



High and low transverse momentum
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SIDIS once again

() = photon virtuality
M = hadron mass

P, 1 = hadron transverse momentum 2 o p2 2
hLl qr = Py /2
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Low and high transverse momentum

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)

Low

77 < Q7
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TMD factorization

Collins, Soper, NPB 193 (81)
Ji, Ma, Yuan, PRD 71 (05)

ya
L

Fyur(z,z, P, Q%) =C' [lel]

= H(Q?, 112,¢, ) /deT PPkr 7 8 (pr — kr +1r — Py /2)

Y eq fi(@ i, C) DY (2, kg 1, Gn) U1 12, ()
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Low and high transverse momentum

High

M? < g5
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SIDIS at high transverse momentum

F(x,z,Q%)
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Example of high-transverse momentum result

1« Y2 2 (¢ (1-2)(1-3)
Four = ° 2 = Z§(2Z —
ver = g2 <2m>2%:““/x a:/ E <Q2 E

*qg— *q— T a < *g—qq
>< [ff(%) D (2) Tl ™ + 11 (3) DY (3) Chul ™ + #2(3) D (3) Chu ™™

Z xT Z xT Z

Thursday, April 16, 2009



Low and high transverse momentum

Low Intermediate High

¢ < Q? M <qgr<Q* M <qgr
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Matching

FouT

A
a7
Must match!
| | 5 ’ Q%
M? Q)

The leading high-gr part is just the “tail” of the leading low-gr part

Collins, Soper, Sterman, NPB250 (85)
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Perturbative corrections to TMDs

q 2y 0 1 L(n~") a/.N\ q p g, p g
fi(z,pr) = 972 12 fi(z) CFf1(x)‘|‘( g ® J1 + qg®f1)($) ;
T P 2
Fuvr = & 5% Sack | 1) D) L( S ) + £1) (D & Pay 4 DY )2

a7
M"F Faq ®flg)($) D?(z)]

Large log, \DGLAP splitting
needs resummation ) ) functions
where L(Q )_ZCFan——SCF

qT qT
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Other TMDs

M2
1J_T ~ —40457:[ 1LT(1), }7
Pt

2
hir M—4 az Flhi],
Pt

AB, D. Boer, M. Diehl, P.J. Mulders, JHEP 08 (08)
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Mismatches at twist 3

We are neglecting something that cannot be neglected...

S|
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Conclusions

e TMD factorization is proven, at least at the one-loop level
® There is a framework to study TMDs, including their evolution

e At the moment, this framework has been used since 1985, but only
for unpolarized TMDs. Most recent work: Landry, Brock, Nadolsky,
Yuan, PRD 67 (03)

e Everything else has been done at “tree-level” neglecting soft factor
and evolution
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