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TMDs

TMDs stands for Transverse Momentum Distributions

Sometimes it is used also for Transverse Momentum Dependent Parton 
Distribution Functions (TMD PDFs) and Fragmentation Functions (TMD 
FFs)

Often in the literature they are called also Unintegrated Parton 
Distribution Functions (uPDFs)  
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Some organization details

• On Wednesdays, once every two weeks

• About 90 min each

• Schedule will be advertised through mailing lists

• Comments, questions more than welcome. My office is B200A (in front of 
director’s office). E-mail: alessandro.bacchetta@jlab.org

• There will be some upcoming theory seminars on the topic, namely

• Z. Kang, Mar 9

• F. Yuan, Apr 27
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Preliminary plan

• Introduction

• Semi-inclusive DIS

• Theory of TMDs 1 (definition, interpretation, gauge link)

• Theory of TMDs 2 (high pT, resummation, evolution)

• Phenomenology of unpolarized SIDIS

• Phenomenology of polarized SIDIS
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mini lecture series

“transverse thinking”:
 an introduction to TMDs

Part 1: Introduction
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Some goals of hadronic physics

•Study the STRUCTURE of the proton, e.g.,

•3D structure 

•Spin

•Flavor

•Test QCD in all its aspects, e.g.,

•Factorization

•Evolution

•Lattice 

•Understand CONFINEMENT

TMDs are relevant 

for all of these issues
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Parton distribution functions essentials
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Deep inelastic scattering (DIS)

proton

lepton

parton
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Factorization

proton

lepton

Partonic scattering amplitude

Distribution amplitude

Key result of QCD
dσ ∼ H ⊗ f
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Universality
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Key result of QCD
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Parton distribution functions

 Photon moves into the screen/ 
proton moves out of  the screen

Parton distribution functions (PDFs) are probability densities to find 
a parton with a given longitudinal momentum and a given spin 

gq
1(x) = ∆q(x) =

fq
1 (x) = q(x) =
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Caveats

• The hard probe “sees” only some components of the partonic fields (good 
fields), or in an equivalent way PDFs are pictures of partons in a specific 
frame of reference (infinite momentum frame)
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Pictures in the infinite momentum frame
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Caveats

• The hard probe “sees” only some components of the partonic fields (good 
fields), or in an equivalent way PDFs are pictures of partons in a specific 
frame of reference (infinite momentum frame)

• Some final state interactions are included inside the PDFs
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Pictures with final state interactions
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Caveats

• The hard probe “sees” only some components of the partonic fields (good 
fields), or in an equivalent way PDFs are pictures of partons in a specific 
frame of reference (infinite momentum frame)

• Some final state interactions are included inside the PDFs

• The intuitive interpretation of the PDFs is not rigorously true. For instance, 
PDFs depend on the factorization scheme, which is inconsistent with the idea 
that they are probability densities

• Formally, we can say that PDFs are nonperturbative objects, they give 
information on the internal structure of the nucleon, they can be defined 
through factorization theorems, they can be extracted from data and used to 
make predictions

• Factorization does not overthrow the “parton model” picture, but modifies it, 
while preserving much of the intuitive framework
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PDFs from global fits
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Figure 9: (a) PDFs extracted from the ZEUS-JETS fit. (b) PDFs extracted
from the ZEUS-JETS fit compared to ZEUS-S PDFs. (c) PDFs extracted from
the ZEUS-JETS fit compared to MRST2001 PDFs. (d) PDFs extracted from the
ZEUS-JETS fit compared to CTEQ6.1 PDFs. The total experimental uncertainty
bands are shown for each PDF set.
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ZEUS Coll, EPJ C42 (05)

xq(x)
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Helicity PDFs from global fits
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FIG. 4: Polarized PDF uncertainties are shown at Q2 = 1
GeV2. The solid curves and shaded areas are the polarized
PDFs and their uncertainties of the new AAC03 results, and
the dashed curves are the uncertainties of the AAC00 results.

As shown in Fig. 4, all the PDF uncertainties are
significantly reduced in the AAC03 analysis in compari-
son with the AAC00 because the accurate E155 data are
added to the data set. In particular, the ∆dv uncertain-
ties are reduced although the ∆dv distribution stays al-
most the same. In addition, the uncertainties of the anti-
quark and gluon distributions are significantly improved.
The antiquark uncertainty reduction is directly due to
the E155 data. However, it is difficult to understand
that the significant reduction of the gluon uncertainties
is due to the added new data. This is because that the
gluon distribution indirectly contributes as a higher order
correction with the coefficient function, and this contri-
bution is less than quark contributions. The huge gluon
uncertainties explicitly indicate the difficulty of fixing the
gluon distribution from the DIS experimental data.

We find that the gluon uncertainty reduction is caused
by an error correlation. The non-diagonal part of the
Hessian indicates a strong correlation between the polar-
ized antiquark and gluon distributions. The correlation
affects the determination of these distributions. We dis-
cuss the details of the uncertainty improvement due to
the correlation in Sec. IVE.

C. Quark spin content

We show the first moments of the AAC03 parameter-
ization at Q2 = 1 GeV2 in Table III, and they are com-
pared with those of the AAC00 NLO-2 set. The first
moments of the up- and down-valence quark distribu-
tions are fixed in both analyses. The first moments indi-
cate that quarks carry about 20% of the parent nucleon
spin, and gluons carry a large positive fraction of the nu-
cleon spin. Their uncertainties are significantly reduced
by the added E155 data; however, the present data are
not enough to obtain accurate values, especially for the

TABLE III: The first moments of the obtained polarized
PDFs at Q2 = 1 GeV2. The AAC03 analysis results are
compared to those of the previous results (AAC00 NLO-2).
The ∆Σ is the quark spin content.

∆q̄ ∆g ∆Σ

AAC03 −0.062 ± 0.023 0.499 ± 1.266 0.213 ± 0.138

AAC00 −0.057 ± 0.037 0.533 ± 1.931 0.241 ± 0.225

gluon first moment.
The uncertainty of the spin content ∆Σ strongly de-

pends on the antiquark uncertainty because it is given by
∆ΣNf=3 = ∆uv + ∆dv + 6∆q̄. The first moments of the
valence-quark distributions are fixed, so that the ∆Σ un-
certainty is equal to six times the ∆q̄ uncertainty, which
could be large due to the uncertainty of the distribution
∆q̄(x) in the small-x region. It suggests that the extrap-
olation into the smaller-x region should be ambiguous
in calculating the integral over x. We expect that accu-
rate polarized antiquark distributions will be measured
in future, then the quark spin content issue will become
clear.

D. Comparison with other parameterizations

The AAC03 analysis results are compared with other
parameterizations at Q2 = 1 GeV2 in Fig. 5. For com-
parison, we choose three sets of the polarized PDFs in
the NLO: GRSV01 (standard scenario) [9], BB (ISET=3)
[13], and LSS (MS scheme) [12]. These parameterizations
used basically the same experimental data set of the po-
larized DIS, but they choose averaged data tables over x
and Q2, whereas full tables are used in the AAC analysis.
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FIG. 5: The AAC03 PDFs at Q2 = 1 GeV2 are compared
with the ones for other parameterizations by GRSV01 (stan-
dard scenario) [9], BB (ISET=3) [13], and LSS (MS scheme)
[12]. The shaded areas are the uncertainties of the AAC03
analysis.
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AAC, Hirai et al. PRD69 (04)

x∆q(x)
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Transverse momentum dependent
parton distribution functions
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Transverse vs. longitudinal
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Transverse vs. longitudinal

photon


photon

 Photon moves into the screen/ 
proton moves out of the screen

proton

parton

Longitudinal
 spin 
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Transverse vs. longitudinal

photon


photon

 Photon moves into the screen/ 
proton moves out of the screen

proton

parton

Transverse spin
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Transverse momentum distributions

xfu
1 (x, p2

T )xfu
1 (x)

A.B., F. Conti, M. Radici, PRD78 (08)

Standard collinear PDF TMD
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Relation to GPDs

• In general, parton distributions are 6 dimensional (Wigner 
distributions)

• 3 dim. in coordinate space

• 3 dim. in momentum space

X. Ji, PRL 91 (03), Meissner et al. arXiv:0805.3165
for even more dim. (8), see Collins, Rogers, Stasto, PRD77 (08)

• GPDs in impact parameter space can be interpreted as 
probability densities in 2 transverse coordinates and 1 
longitudinal momentum

• TMDs can be interpreted as probability densities in 3 
momentum space

• Similar caveats as standard collinear PDFs
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Nucleon tomography in momentum space

A.B., F. Conti, M. Radici, PRD78 (08)
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A.B., F. Conti, M. Radici, PRD78 (08)

Nontrivial features
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Simple model calculations suggests

• x-dependence

• flavor dependence

• deviation from a simple Gaussian

Fundamental information on the nucleon structure

almost as important as standard collinear PDFs 
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Phenomenological results

• There are several different approaches to study unpolarized TMDs: 
nonperturbative contribution only, nonperturbative+resummation, 
nonperturbative+parton shower from Monte Carlo generators...

• So far, essentially all analyses consider simple Gaussians with flavor-
independent and usually also x-independent widths. Mostly Drell--Yan.

• Interesting analysis done at JLab Hall C: down quarks have higher 
transverse momentum than up quarks
                                                                                                                      Mkrtchyan et al., PLB 665 (08)
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SIDIS data with hadron identification

FIG. 4: The P 2
t dependence of differential cross-sections per nucleus for π± production on hydrogen

(H) and deuterium (D) targets at 〈z〉=0.55 and 〈x〉=0.32. The solid lines show the result of the

seven-parameter fit described in the text. The error bars are statistical only. Systematic errors

are typically 4% (relative, see text for details). The average value of cos(φ) varies with P 2
t (see

Table 1.

(see Fig. 1). We assume further that sea quarks are negligible (typical global fits show less

than 10% contributions at x = 0.3). To make the problem tractable, we take only the

leading order terms in (kt/Q), which was shown to be a reasonable approximation for small

to moderate Pt in Ref. [6]. The simple model can then be written as:

σπ+
p = C[4c1(Pt)e−b+u P 2

t + (d/u)(D−/D+)c2(Pt)e−b−
d

P 2
t ]

σπ−
p = C[4(D−/D+)c3(Pt)e−b−u P 2

t + (d/u)c4(Pt)e−b+
d

P 2
t ]

σπ+
n = C[4(d/u)c4(Pt)e−b+

d
P 2

t + (D−/D+)c3(Pt)e−b−u P 2
t ]

σπ−
n = C[4(d/u)(D−/D+)c2(Pt)e−b−

d
P 2

t + c1(Pt)e−b+u P 2
t ]

(4)

where C is an arbitrary normalization factor, and the inverse of the total widths for each

9

JLab Hall C, Mkrtchyan et al., PLB665 (08)Essential to study flavor structure
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Impact on high-energy physics
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Figure 6. The CSS resummed cross sections in Z boson production at the Tevatron. The curves are

computed in several models for the CSS form factor W (b) at large impact parameters (b > 1 GeV−1):

(a) W (b) at large b is given by extrapolation of its perturbative part from b < 1 GeV−1 (solid); (b) the

same as (a), multiplied by a Gaussian smearing term e−0.8b
2

(short-dashed); (c) a phenomenologicalBLNY

form, which shows good agreement with the Run-1 Z data (dot-dashed) [24]; (d) an updated Ladinsky-

Yuan form, which shows worse agreement with the Run-1 Z data (long-dashed) [24]. Note that the

extrapolationmodel (curves (a) and (b)) must include a Gaussian smearing term e−gb
2

,with g∼ 0.8 GeV2,
in order to be close to the BLNY form (and, hence, to the data).

of the perturbation series cures the instability of the theory at q2T # Q2 by summing

the troublesome qT logarithms through all orders of !s into a soft (Sudakov) form

factor [30]. The validity of such re-arrangement is proved by a factorization theorem

in the method by Collins, Soper, and Sterman (CSS) [31]. The resummation in vec-
tor boson production is a special case of a more general problem, and essentially the

same method applies to hadroproduction in e+e− scattering [32], and semi-inclusive

hadroproduction in deep-inelastic scattering [33, 34, 35]. The CSS formalism automat-

ically preserves the fundamental symmetries (renormalization- and gauge-group invari-

ance, energy-momentum conservation) and is convenient in practice. The qT resumma-

tion can be extended to include effects of particle thresholds [36], heavy quark masses

[37], and hadronic spin [38, 39]. RESBOS [23, 24] is a Monte-Carlo integrator program

that quickly and accurately evaluates the CSS resummed cross sections in Drell-Yan-like

processes.

All small-qT logarithms arise in the CSS method from the form factorW (b) in im-
pact parameter (b) space, composed of the Sudakov exponential and b-dependent parton
distribution functions. The resummed qT distribution is obtained by taking the Fourier-

Bessel transform ofW (b) into qT space (realized numerically in RESBOS). The alterna-
tive approaches evaluate the Fourier-Bessel transform of the leading logarithmic towers

analytically, with the goal to improve transition from the resummed cross section to the

finite-order cross section at intermediate qT [40, 41]. The integration over all b in the

Fourier-Bessel transform introduces sensitivity to the nonperturbative QCD dynamics

P. Nadolsky, hep-ph/0412146
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Orbital angular momentum

Vos, McCarthy, Am. J. Phys. 65 (97), 544

• In atomic physics, 
wavefunctions with orbital 
angular momentum have 
distinct shapes 

this context it is interesting to note an early discussion by
Coulson,12 who emphasized the potential of momentum in-
formation for studying chemical bonding. At that time par-
tially momentum-integrated and energy-summed information
on molecular momentum densities could be obtained from
Compton scattering.2,3

The prototype for the discussion of the chemical bond is
the hydrogen molecule. The distance between the nuclei in a
hydrogen molecule is 1.4 a.u. !0.74 Å". This is considerably
smaller than the spatial extension of two atomic hydrogen 1s
orbitals !see Fig. 2", each of which has an rms charge radius
of 1.73 a.u. The orbitals of two undisturbed hydrogen atoms
at the molecular distance would therefore overlap.
The chemical bond is described by molecular orbitals that

are SCF solutions of the molecular Schrödinger equation.
The most stable solution is one that minimizes the total en-
ergy of the system. There are different types of molecular
orbitals, each with a different symmetry property. In a sim-
plified description we understand them in terms of linear
combinations of atomic orbitals. For two identical atoms,
indistinguishability of the electrons limits the possible com-
binations of atomic orbitals to two, one symmetric and one

antisymmetric. The antisymmetric combination has a nodal
plane equidistant from the nuclei. Nonidentical atoms result
in analogous molecular orbitals, but the nodal surface in the
analogue of the antisymmetric orbital is deformed and dis-
placed. The electron density is the squared magnitude of the
molecular orbital.
The key to understanding the energies of different types of

molecular orbitals in the atomic-orbital picture, and therefore
their bonding properties, is the density of negative charge
resulting from the interference of the overlapping atomic or-
bitals. This is called the interference density.13 The interfer-
ence of s orbitals is constructive in the symmetric case, de-
structive in the antisymmetric case.
We first compare the symmetric combination of two 1s

orbitals with two bare 1s orbitals at the molecular distance.
Constructive interference results in charge density being re-
distributed from the region near the nuclei to the overlap
region between the nuclei. The density changes are of two
kinds.
First, the volume occupied by the electrons becomes larger

and the density smoother. This results in a significant lower-
ing of the kinetic energy, since lower absolute momenta re-

Fig. 2. Three-dimensional plots of the probability density !#(x ,y ,0) !2 in coordinate space and the probability density !$(px ,py,0) !2 in momentum space are
shown for the 1s , 2s , and 2py orbitals of the hydrogen atom. Note that in momentum and coordinate space the orbitals have the same symmetry. Also note
that the more extended the orbital is in coordinate space, the more confined in momentum space. The node for the 2s orbital results in a density minimum
which is visible as a circle centered at the origin in both the coordinate- and momentum-space pictures.
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Hydrogen atom wavefunctions
in momentum space
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Orbital angular momentum

sult from larger volumes and smaller orbital gradients. We
call this the overlap effect. Potential-energy changes in the
overlap region are comparatively small.
The redistribution results in reduced density near each

nucleus, causing the second effect which is called promotion.
The reduced charge cloud is attracted to the nucleus more
strongly so that the effective atomic orbital shrinks in space.
We can model each effective atomic orbital by exp!!"r#.

For the hydrogen-molecule bond the decay constant " in-
creases from 1 in the bare-atom case to 1.193 in the molecu-
lar case. The kinetic energy is considerably increased and the
potential energy considerably decreased. These changes al-
most balance for the hydrogen molecule.
In comparison with two bare atoms at the molecular dis-

tance there is a net increase in kinetic energy due to the
competing effects of promotion and the overlap region. This
is outweighed by the decrease in potential energy due to
promotion. The decisive effect is the decrease in kinetic en-
ergy in the overlap region, since the effects of promotion on
the kinetic and potential energies almost cancel. The sym-
metric combination is a bonding orbital.
The energy arguments work exactly in reverse for the an-

tisymmetric combination. Charge is taken from the overlap
region and placed near the nuclei. The increased density gra-
dient causes an increase in kinetic energy, which is decisive
in the bonding consideration. The promotion effect is an ex-
pansion of the effective atomic orbitals, with the correspond-
ing decay constant being smaller than for bare atoms. The
antisymmetric combination is an antibonding orbital.
Bonding for p orbitals is different from that for s orbitals.

A p orbital has lobes of opposite sign on opposite sides of
the nucleus. Hence increased interference density in the
overlap region, resulting in a bonding molecular orbital, is
obtained by adding adjacent p orbitals with opposite signs.
The antisymmetric combination is the bonding orbital. We
show later that this difference results in different behavior of
s- and p-derived electronic states in ionic solids !see Fig. 5#.
There is another approach to the hydrogen molecule. As

we have seen before, the highest momentum density is near
the origin and corresponds to the part of the orbital in coor-
dinate space that is far away from the nucleus. At large dis-
tances one electron experiences the attractive potential of
two protons, rather close together and screened by the other
electron. Near the origin the momentum-space orbital there-
fore resembles that of a 1s electron in a helium atom.
To what extent is the momentum profile influenced by the

bonding? In Fig. 6 we show the absolute squares of calcu-
lated bonding and antibonding orbitals of the hydrogen mol-

Fig. 3. The experimental measurement of !$!q#!2 for the hydrogen atom.
The experiment was done using three different energies of the incoming

electrons, as indicated in the figure. All three experiments gave identical

momentum densities. The exact solution of the Schrödinger equation !solid
curve# fits the EMS data perfectly.

Fig. 4. The measured energy–momentum density of the valence levels of

argon gas. On the left we show it as a greyscale plot. There is significant

density for two different binding energies corresponding to the 3p and 3s

orbitals. Their completely different nature is evident from the fact that the

3s electrons have maximum density at zero momentum, whereas the 3p

electrons have minimum density at zero momentum !the density would be
zero for perfect momentum resolution#. In the right half we show a com-

parison of the measured momentum densities with ones obtained from SCF

calculations !broken curves# and after convolution with the experimental
momentum resolution !full curves#.

Fig. 5. The chemical bond derived from !a# s orbitals and !b# p orbitals. In
the case of s orbitals the bonding molecular orbital is formed if the orbital

on one atom is obtained from the orbital on the other atom by a simple

translation. For the p orbitals the bonding orbital is formed if the orbital on

one atom is obtained from the orbital on the other by a translation and

multiplication by !1.
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Vos, McCarthy, Am. J. Phys. 65 (97), 544

• In atomic physics, 
wavefunctions with orbital 
angular momentum have 
distinct shapes 

• The most direct visualization of 
these shapes is provided by 
scattering experiments and is in 
momentum space

f1(x, p2
T ) = |ψs−wave|2 + |ψp−wave|2 + . . .

At low pT |ψp−wave|2 ∼ p2
T
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TMDs and orbital angular mom.

Signs of orbital ang. mom.
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TMDs and orbital angular momentum

• All colored TMDs vanish if there is no quark orbital angular momentum

• Any quantitative statement about the total orbital angular momentum 
is model-dependent

quark pol.
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Twist-2 TMDs
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Main messages

• TMDs allow a 3D momentum tomography

• All transverse-momentum dependences, starting from that of 
f1, are interesting and largely unknown 

• Strong indirect connections with orbital angular momentum

34


