Jeefferson Lab

mini lecture series

$$
\begin{aligned}
& \text { transverse thinking": } \\
& \text { an introduction to TMDs }
\end{aligned}
$$

Alessandro Bacchetta

TMDs

TMDs stands for Transverse Momentum Distributions
Sometimes it is used also for Transverse Momentum Dependent Parton Distribution Functions (TMD PDFs) and Fragmentation Functions (TMD FFs)

Often in the literature they are called also Unintegrated Parton Distribution Functions (uPDFs)

Some organization details

- On Wednesdays, once every two weeks
- About 90 min each
- Schedule will be advertised through mailing lists
- Comments, questions more than welcome. My office is B200A (in front of director's office). E-mail: alessandro.bacchetta@jlab.org
- There will be some upcoming theory seminars on the topic, namely
- Z. Kang, Mar 9
- F. Yuan, Apr 27

Preliminary plan

- Introduction
- Semi-inclusive DIS
- Theory of TMDs 1 (definition, interpretation, gauge link)
- Theory of TMDs 2 (high pT, resummation, evolution)
- Phenomenology of unpolarized SIDIS
- Phenomenology of polarized SIDIS

mini lecture series

"transverse thinking": an introduction to TMDs

Part 1: Introduction

Some goals of hadronic physics

- Study the STRUCTURE of the proton, e.g.,
-3D structure
- Spin
- Flavor
- Test QCD in all its aspects, e.g.,
- Factorization TMDs are relevant
- Evolution for all of these issues
- Lattice
- Understand CONFINEMENT

Parton distribution functions essentials

Deep inelastic scattering (DIS)

$$
-\left(I-I^{\prime}\right)^{2}=Q^{2}=\text { virtuality of photon } \quad x=\frac{Q^{2}}{2 P \cdot\left(I-I^{\prime}\right)}
$$

Factorization

\square Partonic scattering amplitude
Distribution amplitude

$$
d \sigma \sim H \otimes f
$$

Key result of QCD

Universality

Parton distribution functions

Parton distribution functions (PDFs) are probability densities to find a parton with a given longitudinal momentum and a given spin

Photon moves into the screen/ proton moves out of the screen

$$
\begin{gathered}
f_{1}^{q}(x)=q(x)= \\
g_{1}^{q}(x)=\Delta q(x)=0-(\bigcirc)-(Q)
\end{gathered}
$$

Caveats

- The hard probe "sees" only some components of the partonic fields (good fields), or in an equivalent way PDFs are pictures of partons in a specific frame of reference (infinite momentum frame)

Pictures in the infinite momentum frame

Caveats

- The hard probe "sees" only some components of the partonic fields (good fields), or in an equivalent way PDFs are pictures of partons in a specific frame of reference (infinite momentum frame)
- Some final state interactions are included inside the PDFs

Pictures with final state interactions

Caveats

- The hard probe "sees" only some components of the partonic fields (good fields), or in an equivalent way PDFs are pictures of partons in a specific frame of reference (infinite momentum frame)
- Some final state interactions are included inside the PDFs
- The intuitive interpretation of the PDFs is not rigorously true. For instance, PDFs depend on the factorization scheme, which is inconsistent with the idea that they are probability densities
- Formally, we can say that PDFs are nonperturbative objects, they give information on the internal structure of the nucleon, they can be defined through factorization theorems, they can be extracted from data and used to make predictions
- Factorization does not overthrow the "parton model" picture, but modifies it, while preserving much of the intuitive framework

PDFs from global fits

ZEUS Coll, EPJ C42 (05)

Helicity PDFs from global fits

$$
x \Delta q(x)
$$

AAC, Hirai et al. PRD69 (04)

Transverse momentum dependent parton distribution functions

Transverse vs. longitudinal

Transverse vs. longitudinal

Photon moves into the screen/
photon

photon
Longitudinal
spin

Transverse vs. longitudinal

Photon moves into the screen/
photon
\cdots

Transverse momentum distributions

$$
x f_{1}^{u}(x)
$$

$$
x f_{1}^{u}\left(x, p_{T}^{2}\right)
$$

Standard collinear PDF

TMD
A.B., F. Conti, M. Radici, PRD78 (08)

Relation to GPDs

- In general, parton distributions are 6 dimensional (Wigner distributions)
- 3 dim. in coordinate space
- 3 dim. in momentum space
X. Ji, PRL 91 (03), Meissner et al. arXiv:0805.3165
for even more dim. (8), see Collins, Rogers, Stasto, PRD77 (08)
- GPDs in impact parameter space can be interpreted as probability densities in 2 transverse coordinates and 1 longitudinal momentum
- TMDs can be interpreted as probability densities in 3 momentum space
- Similar caveats as standard collinear PDFs

A.B., F. Conti, M. Radici, PRD78 (08)

Nontrivial features

Simple model calculations suggests
A.B. F C nucleon structure

- x-dependence
- flavor dependence

Fundamental information standard collinear PDFS almost as important as standard coll

- deviation from a simple Gaussian

Phenomenological results

- There are several different approaches to study unpolarized TMDs: nonperturbative contribution only, nonperturbative+resummation, nonperturbative+parton shower from Monte Carlo generators...
- So far, essentially all analyses consider simple Gaussians with flavorindependent and usually also x-independent widths. Mostly Drell--Yan.
- Interesting analysis done at JLab Hall C: down quarks have higher transverse momentum than up quarks

Mkrtchyan et al., PLB 665 (08)

SIDIS data with hadron identification

Essential to stu JLab Hall C, Mkrtchyan et al., PLB665 (08)

Impact on high-energy physics

P. Nadolsky, hep-ph/0412146

Orbital angular momentum

Hydrogen atom wavefunctions
in momentum space

- In atomic physics, wavefunctions with orbital angular momentum have distinct shapes

Orbital angular momentum

- In atomic physics, wavefunctions with orbital angular momentum have distinct shapes
- The most direct visualization of these shapes is provided by scattering experiments and is in momentum space

$$
f_{1}\left(x, p_{T}^{2}\right)=\left|\psi_{s-\text { wave }}\right|^{2}+\left|\psi_{p-\text { wave }}\right|^{2}+\ldots
$$

At low $p_{T}\left|\psi_{p-\text { wave }}\right|^{2} \sim p_{T}^{2}$

TMDs and orbital angular mom.

TMDs and orbital angular momentum

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	quark pol.			
		U	L	T
	U	f_{1}		h_{1}^{\perp}
	L		g_{1}	$h_{1 L}^{\perp}$
	T	$f_{1 T}^{\perp}$	$g_{1 T}$	$h_{1}, h_{1 T}^{\perp}$
	Twist-2 TMDs			

- All colored TMDs vanish if there is no quark orbital angular momentum
- Any quantitative statement about the total orbital angular momentum is model-dependent

Main messages

- TMDs allow a 3D momentum tomography
- All transverse-momentum dependences, starting from that of f_{1}, are interesting and largely unknown
- Strong indirect connections with orbital angular momentum

