Processi CMOS submicrometrici, resistenza alle radiazioni

M. Manghisoni

Università di Bergamo Dipartimento di Ingegneria Industriale

INFN Sezione di Pavia

Corso nazionale di Formazione Elettronica di Front-end per i rivelatori di particelle

INFN-Pavia, 25-29 Ottobre 2004

Sommario

- Tecnologie CMOS e radiazioni
- Interazione tra radiazione e materia
- Meccanismi del danno da radiazione
- Effetti delle radiazioni su strutture MOS
- Effetti su parametri statici e di rumore
- Approccio Radiation Tolerant
- Effetti dello *scaling* tecnologico
- Bibliografia

Effetti delle radiazioni su dispositivi semiconduttori

 Studio cominciato in seguito a danni riportati da circuiti dei primi satelliti a causa delle particelle energetiche presenti nelle fasce di Van Allen

• In seguito, interesse crescente sullo studio di circuiti che lavorano in ambiente radioattivo: missioni spaziali, satelliti, strumentazione per impianti di produzione di energia nucleare, esperimenti di fisica delle alte energie (HEP *experiments*)

HEP *experiments*

- Elevate dosi di radiazioni soprattutto per rivelatori vicini al punto di interazione
- ⇒ circuiti integrati utilizzati per elettronica di lettura dei rivelatori resistenti alle radiazioni (*rad-hard*)

⇒ sviluppo di speciali tecnologie *rad-hard* nelle quali la tolleranza alle radiazioni è migliorata grazie a:

- particolari processi produttivi
- speciali tecniche di layout
- speciali architetture circuitali

Tecnologie rad-hard

Presentano una serie di svantaggi

- molto costose a causa delle variazioni richieste sul processo
- tecnologicamente poco avanzate (un paio di tecnologie in ritardo rispetto a quelle commerciali)
- bassa resa e variazioni dei parametri dei dispositivi tra processi produttivi ma anche tra singoli *wafer*
- a causa della scarsa domanda la produzione di alcune tecnologie potrebbe non essere assicurata per il futuro

Tecnologie CMOS sub-µ**m**

- in un MOS la parte più sensibile alle radiazioni è l'ossido di gate (spessore t_{ox})
- $\downarrow t_{ox} \Rightarrow \uparrow$ tolleranza alle radiazioni
- $\downarrow t_{ox}$ naturale tendenza delle moderne tecnologie
- attuali tecnologie CMOS *deep submicron* hanno spessori dell'ossido di gate di qualche *nm*
- intrinseca resistenza alle radiazioni di queste tecnologie suggerisce l'impiego in ambienti radioattivi senza variazioni di processo
- comunque necessario impiego di particolari tecniche di layout e di architetture circuitali

Radiazioni ionizzanti

- particelle e onde elettromagnetiche dotate di potere altamente penetrante nella materia
- ciò permette alle radiazioni di far saltare da un atomo all'altro gli elettroni che incontrano nel loro percorso ⇒ ioni
- gli atomi, urtati dalle radiazioni, perdono la loro neutralità (uguale numero di protoni e di elettroni) e si caricano elettricamente, ionizzandosi

Interazione radiazione-materia

Modalità di interazione dipendono da:

Particella incidente

- energia cinetica
- massa
- carica
- tipo di particella

Materiale bersaglio

- massa
- densità
- numero atomico

Utile suddividere le particelle incidenti in particelle cariche e particelle neutre

INFN-Pavia, 25-29 Ottobre 2004

Particelle cariche

protoni

- interazione coulombiana: ionizzazione o repulsione atomica (energie < 100 keV)
- collisione con nuclei: eccitazione o spostamento di nuclei nel reticolo cristallino
- reazione nucleare (energie > 10 MeV)
- ioni pesanti
 - stessi fenomeni di protoni
- elettroni
 - interazione coulombiana: ionizzazione o eccitazione atomica
 - scattering con i nuclei: spostamento all'interno del reticolo se energia di *e* abbastanza alta e trasferita al nucleo stesso

Particelle neutre

neutroni

- reazione nucleare: neutrone assorbito da nucleo che emette altre particelle (protoni, particelle α , fotoni γ)
- collisioni elastiche: neutroni incidenti si scontrano con nuclei e continuano loro percorso ⇒ nuclei possono spostarsi nel reticolo ⇒ ionizzazione e spostamenti nucleari
- collisioni anelastiche: fenomeni simili a collisioni elastiche ma con eccitazione di nuclei che in seguito decadono ed emettono raggi γ

probabilità che avvengano questi fenomeni dipende da energia dei neutroni:

- lenti (energie <1 eV) \rightarrow reazioni nucleari o collisioni elastiche
- intermedi (energie tra <1 eV e 100 eV)</p>
- veloci (energie >100 eV) \rightarrow collisioni elastiche

INFN-Pavia, 25-29 Ottobre 2004

Particelle neutre

- fotoni
 - effetto fotoelettrico:

- effetto Compton:

 creazione di coppie elettrone-lacuna:

INFN-Pavia, 25-29 Ottobre 2004 Elettronica di Front-end per i rivelatori di particelle

Particelle neutre

Il peso relativo dei tre tipi di interazione tra fotoni e materia dipende dall'energia del fotone incidente e dal numero atomico del materiale considerato

INFN-Pavia, 25-29 Ottobre 2004

Riassumendo

- interazione di radiazione, sia essa costituita da particelle cariche o neutre, con materia, può dare origine a due classi di eventi:
 - effetti ionizzanti
 - spostamento reticolare
- fenomeni possono essere direttamente causati da particella incidente o da prodotti secondari (maggioranza)
- dipendono da tipo di particella incidente e da sua energia
 - neutroni \rightarrow dislocazione di atomi nel reticolo
 - fotoni ed elettroni \rightarrow ionizzazione

Danno da ionizzazione

- semiconduttore o isolante: formazione di coppie *e-h* in numero proporzionale alla quantità di energia depositata nel materiale espressa dalla dose totale di radiazioni assorbita
- dose assorbita espressa in *rad* o in *Gray* (1 *Gy*=100 *rad*)
- ⇒ a patto di scegliere particelle il cui principale effetto di interazione è la ionizzazione, in fase di test possiamo trascurare il tipo di particella e fare riferimento solo alla quantità di energia depositata nel materiale per studiare gli effetti della ionizzazione

Danno da dislocazione reticolare

- particelle incidente sposta atomi di silicio all'interno del reticolo cristallino creando difetti che alterano le caratteristiche del cristallo
- principale meccanismo di degradazione di dispositivi irraggiati con neutroni ad alta energia
- si manifesta con tre importanti effetti:
 - formazione di stati intermedi: facilitano transizione di elettroni da banda di valenza a banda di conduzione
 - intrappolamento di portatori da parte di stati vicini a limiti di banda
 - cambiamento caratteristiche di drogaggio

Dosimetria

 Dose assorbita energia media dE per unità di massa dm

$$D = \frac{dE}{dm} [rad]$$

rad energia di 100*erg* in 1*g* di materiale nel SI si utilizza il *Gray* (*Gy*): 1*Gy* = 100 *rad*

 Dose rate dose ricevuta dal materiale nell'unità di tempo

$$D' = \frac{dD}{dt} [rad/s][Gy/s]$$

Effetti delle radiazioni su strutture MOS

Parte più sensibile a radiazioni ionizzanti è *SiO*₂ Particella ionizzante attraversa struttura MOS

- generazione di coppie *e-h*
 - Gate, substrato coppie si ricombinano velocemente ⇒ nessun effetto
 - *SiO*₂ parte si ricombina, parte restante separata da campo elettrico applicato. Per V>0:
 - e⁻ verso elettrodo di gate
 - lacune verso interfaccia SiO_2 -Si dove possono essere catturate dando origine a potenziale fisso in SiO_2

• Creazione trappole all'interfaccia *SiO₂-Si*

Generazione e ricombinazione di coppie *e-h* in *SiO*₂

- mobilità e⁻ in SiO_2 20 cm²/Vs
- mobilità lacune in SiO₂ compresa tra 10⁻⁴ e 10⁻¹¹ cm²/Vs
- \Rightarrow e⁻ che non si ricombinano con lacune escono da *SiO*₂ in tempi brevi
- ⇒ rapporto tra lacune ed e⁻ intrappolati nell'ordine di 10³ - 10⁶

18

Generazione di coppie *e-h*

numero di coppie generate dipende da

• quantità totale di energia depositata da particelle nel materiale \Rightarrow LET (Linear Energy Transfer)

- ρ massa per unità di volume [kg/m³]
- dE/dx quantità media di energia trasferita per unità di lunghezza
- ⇒ LET dipende da energia e natura particella, tipo di materiale
- energia necessaria per creare una coppia in SiO₂ 17±1 eV

INFN-Pavia, 25-29 Ottobre 2004

Ricombinazione

- legata qualitativamente alla LET: elevata LET ⇒ elevato # di coppie ⇒ elevata probabilità di ricombinazione
- proporzionale a densità di coppie (*≠* modelli)
- funzione del campo elettrico applicato

Elettronica di Front-end per i rivelatori di particelle

INFN-Pavia, 25-29 Ottobre 2004

Trasporto di *h* in *SiO*₂

- dopo la generazione le lacune non ricombinate cominciano a muoversi per effetto del campo elettrico
- per V_{GB}>0 le lacune tendono a spostarsi verso l'interfaccia SiO₂-Si
- trasporto lacune caratterizzato da tempi di transito molto variabili e dipendenti da T (*sec* a T ambiente fino a 10⁴ *sec* a 80 K)
- meccanismo che spiega spostamento lacune in *SiO₂*: *small polaron hopping*

Small polaron hopping

- quando una trappola cattura una h il potenziale totale del sistema ↓ per effetto della distorsione del reticolo attorno alla trappola
- ⇒la *h* crea una buca di potenziale nella quale è auto intrappolata
- il passaggio tra due centri di cattura vicini tra loro avviene per effetto tunnel grazie alle fluttuazioni termiche del sistema che alterano il potenziale dei centri di cattura

Tempo di transito

Tempo caratteristico con cui le lacune si muovono all'interno dell'ossido

$$\mathbf{t}_{s} = \mathbf{t}_{s}^{0} \left(\frac{\mathbf{t}_{ox}}{\mathbf{a}} \right)^{1/\alpha} \exp \left(\frac{\Delta_{0} - \mathbf{qaE}_{ox}/2}{\mathbf{kT}} \right)$$

- q, k carica elettrica e costante di Boltzmann
- *a* distanza media di salto in direzione del campo el.
- t_{OX} ed E_{OX} spessore e campo elettrico nell'ossido
- T temperatura assoluta in gradi K
- Δ_0 energia di attivazione a campo nullo
- t⁰_s costante di tempo critica del processo
- α parametro che per lacune in *SiO*₂ viene preso = 0.25

Carica intrappolata in *SiO*₂

- *h* che hanno terminato percorso in SiO₂ ⇒ intrappolate all'interfaccia SiO₂-Si o SiO₂-gate
- per V_{GB}>0 *h* intrappolate a interfaccia *SiO₂-Si* a causa di difetti in *SiO₂* che funzionano come centri di trappola
- trappole localizzate nei pressi dell'interfaccia (*SiO₂-Si* o *SiO₂-gate*) entro pochi *nm*
- origine dei difetti da attribuire a tecniche di produzione di SiO₂

Difetti in SiO₂

- Struttura ideale: 1 atomo di *Si* (tetravalente) legato a 4 atomi di *O* (bivalente)
- se viene a mancare un atomo di O ⇒ struttura trivalente in cui 1 atomo di Si è legato a tre di O con un e⁻ spaiato

- queste strutture possono mettere in comune l'espaiato creando un legame tra debole tra due atomi di *Si* che introduce uno stato localizzato nella banda proibita di *SiO₂* che può agire da trappola per le lacuna
- la lacuna può portare alla rottura del legame *Si-Si* e all'intrappolamento attraverso la perdita di 1 degli e⁻

Variazione di soglia

lacune intrappolate danno origine a variazione negativa della tensione di soglia ΔV_{OX}

$$\Delta V_{\text{ox}} = -\frac{1}{C_{\text{ox}}} \int_{0}^{t_{\text{ox}}} \frac{\mathbf{x}}{t_{\text{ox}}} \rho(\mathbf{x}) d\mathbf{x} = -\frac{q}{\epsilon_{\text{ox}}} t_{\text{ox}} \Delta N_{\text{ot}}$$

- q carica elettrone
- $C_{OX} = \epsilon_{OX} / t_{OX}$ capacità dell'ossido per unità di area
- t_{ox} spessore dell'ossido
- ϵ_{OX} costante dielettrica dell'ossido
- ΔN_{ot} densità superficiale di trappole all'interfaccia
- $\rho(x)$ distribuzione spaziale della densità di carica in SiO₂

Trappole all'interfaccia SiO₂-Si

- densità di trappole 1 di diversi ordini di grandezza per effetto delle radiazioni ionizzanti
- proprietà delle trappole
 - − localizzate entro 0.5 nm da interfaccia \Rightarrow possono scambiare cariche con il *Si*
 - carica residente positiva, negativa o neutra
 - distinzione fra trappole lente e veloci

Centri di trappola: un atomo di *Si* legato a tre soli atomi di *Si*

⇒ formazione di trappole nella banda proibita della struttura cristallina

Carica all'interfaccia SiO₂-Si

- può essere positiva, negativa o neutra
- si distingue secondo il contributo di carica in
 - donatori rilasciano un e- passando da un livello energetico < ad uno > al livello di Fermi. Risultano neutre se occupate da un e-, cariche + se vuote
 - accettori la trappola cattura un e- quando passa da un livello energetico > ad uno < al livello di Fermi. Risultano neutre se vuote, cariche – se occupate da un e-
- NMOS livello di Fermi in parte superiore del gap ⇒ trappole all'interfaccia si caricano –
- PMOS livello di Fermi in parte inferiore del gap ⇒ trappole all'interfaccia si caricano +

Border traps

- trappole nell'ossido che possono modificare la propria polarità
- possono scambiare carica con Si con una probabilità che decresce esponenzialmente con l'aumento della distanza dall'interfaccia
- la loro densità dipende da
 - distribuzione spaziale ed energia dei difetti
 - condizioni di polarizzazione \Rightarrow possono emettere o intrappolare cariche in base a V_{GS}
- si distinguono in veloci e lente

Annealing

- Dopo irraggiamento lacune non sono intrappolate in *SiO*₂ in modo permanente
- la carica può neutralizzarsi in un tempo che va dai msec agli anni
- effetto di neutralizzazione della carica intrappolata avviene a temperatura ambiente e prende il nome di *annealing*
- *annealing* di lacune intrappolate si manifesta essenzialmente in due modi
 - annealing per effetto tunnel
 - annealing termico

Annealing per effetto tunnel

- iniezione di e⁻ dal Si del substrato verso SiO₂ che porta ad una parziale ricombinazione delle lacune intrappolate e ad una riduzione della carica positiva in SiO₂
- probabilità del verificarsi dell'effetto tunnel diminuisce in modo *exp* all'aumentare della distanza dall'interfaccia
- annealing per effetto tunnel più efficiente all'aumentare del campo elettrico applicato perché si verifica un abbassamento della barriera di potenziale che deve essere scavalcata dagli e⁻

Annealing termico

- gli e⁻ presenti nella banda di valenza di SiO₂ hanno energia sufficiente per attraversare il gap e ricombinarsi con le lacune intrappolate
- probabilità di emissione di un e⁻ da banda di valenza di SiO₂ verso le trappole in cui sono localizzate le lacune

$$\mathbf{p}_{em} = \mathbf{AT}^2 \cdot \mathbf{exp} \left(-\frac{\mathbf{q}\phi}{\mathbf{kT}} \right)$$

 \Rightarrow p_{em} fortemente dipendente da temperatura

INFN-Pavia, 25-29 Ottobre 2004

Effetti delle radiazioni sui parametri elettrici dei MOS

- variazione della tensione di soglia V_T
- variazione della corrente di leakage e della corrente di sottosoglia
- degradazione della mobilità dei portatori e della transconduttanza
- aumento del rumore elettronico

Tensione di soglia

- Carica intrappolata nell'ossido e aumento degli stati interfacciali
- NMOS
 - Bassa dose ↓ di V_T (carica positiva intrappolata)
 - Dose elevata ↑ di V_T (cariche negative accumulate da trappole a interfaccia)
- PMOS tendenza costante a ↓

 $\Delta \mathbf{V}_{\mathbf{T}} = \Delta \mathbf{V}_{\mathsf{ox}} + \Delta \mathbf{V}_{\mathsf{i+}} = -\frac{\mathbf{Q}_{\mathsf{it}}}{\mathbf{Q}_{\mathsf{ox}}} - \frac{\mathbf{Q}_{\mathsf{ox}}}{\mathbf{Q}_{\mathsf{ox}}}$

Q_{it} carica an interfactor por unità di area
Q_{OX} carica nell'ossido per unità di area

INFN-Pavia, 25-29 Ottobre 2004

Corrente di sottosoglia

- Corrente che fluisce tra D e S per V_{GS}<V_T
- Variazione legata a due fattori
 - tensione di soglia
 - pendenza caratteristica $I_D V_{GS}$ sottosoglia
- NMOS $V_T \downarrow$, pendenza $\downarrow \Rightarrow \uparrow I_D$ sottosoglia
- **PMOS** $V_T \uparrow$, pendenza $\downarrow \Rightarrow \downarrow I_D$ sottosoglia

INFN-Pavia, 25-29 Ottobre 2004

Correnti parassite

- percorsi conduttivi parassiti tra S e D in regione di *bird's beak* e sotto ossido di campo
- In questa regione spessore ossido > rispetto a gate ⇒ carica intrappolata crea canale conduttivo parassita Transistor parassita rappresentato da diversi transistor in // con ≠ W e L = a quella di dispositivo principale
- Effetto solo su nMOS, per pMOS accumulo di carica è positivo e conduzione tra D e S avviene per trasporto di *h*

Correnti parassite e di sottosoglia

NMOS – tecnologia 0.7 μ m - t_{ox} = 17 nm

INFN-Pavia, 25-29 Ottobre 2004

Degradazione della mobilità

• formazione di trappole all'interfaccia

$$\mu = \frac{\mu_0}{\mathbf{1} + \alpha \cdot (\Delta \mathbf{N}_{it})}$$

- Degradazione mobilità
- ⇒ diminuzione della transconduttanza

μ₀ mobilità pre-irraggiamento
 ΔN_{it} aumento trappole interfaccia
 α Parametro della tecnologia
 (10⁻¹⁴ cm²)

Aumento rumore elettronico

Rumore bianco

- Contributo R_{GG}, e R_{BB}, : non varia
- Rumore termico di canale riferito al gate: \uparrow a causa di \downarrow di g_m

Rumore Flicker

 în relazione con carica positiva intrappolata nell'ossido in prossimità dell'interfaccia e con le trappole di bordo

INFN-Pavia, 25-29 Ottobre 2004

Effetti da evento singolo (SEE, Single Event Effects)

- Effetti dovuti al passaggio di una singola particella che genera una variazione del funzionamento di uno o più dispositivi e dell'intero circuito a cui appartengono
 - Single Event Upset (SEU) modifica istantanea dello stato logico di una cella di memoria
 - Single Event Latch-up (SEL) la presenza di un transistor PNP parassita porta all'aumento della corrente e alla distruzione del dispositivo se il latch-up non viene interrotto prontamente

40

Condizioni di polarizzazione

- effetti dell'irraggiamento su parametri elettrici dei MOS dipendono da movimento delle lacune e intrappolamento di cariche all'interfaccia *Si-SiO*₂
- ⇒ dipendono da condizioni di polarizzazione durante l'irraggiamento
- condizioni "worst-case" (favoriscono spostamento di lacune in $SiO_2 \Rightarrow$ accrescono effetti di radiazioni)

INFN-Pavia, 25-29 Ottobre 2004

Approccio Radiation Tolerant

- tecnologie CMOS *deep submicron* con spessori dell'ossido di gate di qualche nm
- impiego di particolari tecniche di layout
 - Enclosed Layout Transistor (ELT)
 - guard rings

Effetto dell'ELT

NMOS – tecnologia 0.7 μ m - t_{OX} = 17 nm

Effetto di ELT e scaling

NMOS – tecnologia 0.25 μ **m -** *ELT*

INFN-Pavia, 25-29 Ottobre 2004

Effetto dello scaling tecnologico

• effetti delle radiazioni sui due tecnologie CMOS a canale submicrometrico

Lunghezza minima di canale [µm]	0.35	0.18
Spessore ossido di gate [nm]	7.0	4.0
Tensione di alimentazione [V]	3.3	1.8

- Condizioni di irraggiamento
 - Sorgente ⁶⁰Co
 - Dose rate 0.3 Gy(Si)/s
 - Dose totale 300 kGy(Si)
 - Polarizzazione worst-case

Effetto dello *scaling* su V_T

nMOS

pMOS

⇒ ridotta variazione della tensione di soglia per effetto dello *scaling* delle dimensioni dell'ossido

INFN-Pavia, 25-29 Ottobre 2004

Effetto dello *scaling* sulla transconduttanza

⇒ ridotta variazione della transconduttanza per effetto dello *scaling* delle dimensioni dell'ossido

INFN-Pavia, 25-29 Ottobre 2004

Effetto dello scaling sul rumore

tecnologia 0.35 µm

tecnologia 0.18 µm

Elettronica di Front-end per i rivelatori di particelle

48

Effetto dello *scaling* sul rumore termico di canale

⇒ ridotta variazione del rumore termico di canale per effetto della ridotta variazione della transconduttanza

INFN-Pavia, 25-29 Ottobre 2004

Effetto dello *scaling* sul rumore 1/f

\Rightarrow ridotta variazione del rumore 1/f per la tecnologia da 0.18 μ m

INFN-Pavia, 25-29 Ottobre 2004

Effetti dello scaling sui SEE

- Single Event Upset (SEU) con lo scaling densità di integrazione ↑ ⇒ quantità di carica immagazzinata per singolo bit ↓ ⇒ circuiti più sensibili a fenomeno del SEU
- Single Event Latch-up (SEL) con lo scaling si ha Retrograde wells, Trench isolation e ridotte VDD ⇒ aiutano nella prevenzione dal SEL

Bibliografia

- T.P. Ma, P.V. Dressendorfer, "Ionizing radiation effects in MOS devices & circuits", John Wiley & Sons.
- G.M. Anelli, "Design and characterization of radiation tolerant integrated circuits in deep submicron CMOS technologies for the LHC esperiments", Tesi di dottorato, Politecnico di Grenoble, 2000.
- M. Manghisoni, L. Ratti, V. Re, V. Speziali, "Radiation Hardness Perspectives for the design of Analog Detector Readout Circuits in the 0.18 μm CMOS Generation", *IEEE Trans. Nucl. Sci.*,vol. 49, no. 6, pp. 2902 – 2909, 2002.
- W. Snoeys, F. Faccio, M. Burns, M. Campbell, E. Cantatore, N. Carrer, et al., "Layout techniques to enhance the radiation tolerance of standard CMOS technologies demonstrated on a pixel detector readout chip", *Nucl. Instr. Meth.*, vol. A 439, pp. 349-60, 2000.
- G. Anelli, F. Faccio, S. Florian, and P. Jarron: "Noise characterization of a 0.25 µm CMOS technology for the LHC experiments", *Nucl. Instr. Meth.*, vol. A457, pp. 361-368, 2001.