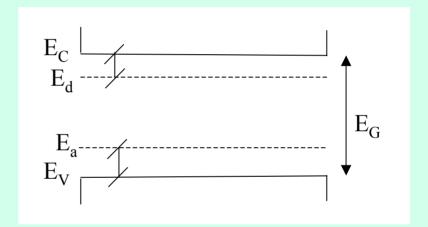


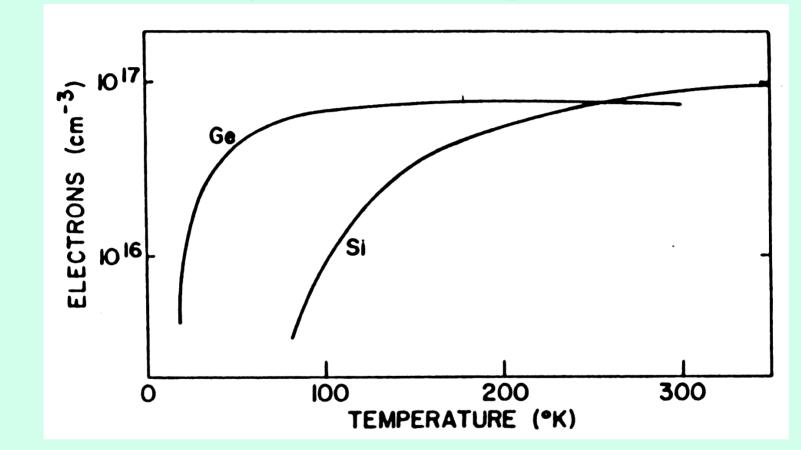
Lezione 1

Daniel V. Camin camin@mi.infn.it


- Microelettronica criogenica: caratteristiche, problematiche e realizzazioni di strutture a basso rumore.
- La spetroscopia di rumore a temperatura variabile quale tecnica per il controllo della contaminazione nei processi produttivi dei FETs.
- Nuove idee sulla trasmissione di segnali analogici via mezzi ottici.

Limitazioni alla operazione dei FETs alle basse temperature

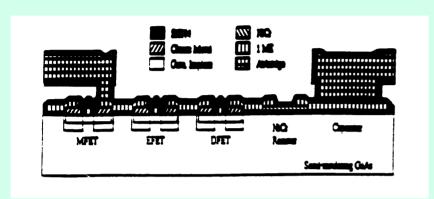
$$\sigma = q.n.\mu$$

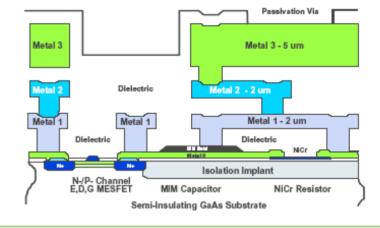

$$n = \sqrt{\left(\frac{N_d N_c}{2}\right)} \cdot \exp\left(-\frac{E_d}{2kT}\right)$$

	Si		Ge G		As
Impurities	As	P		S	Si
Ed(meV)	54	45	10	6	5

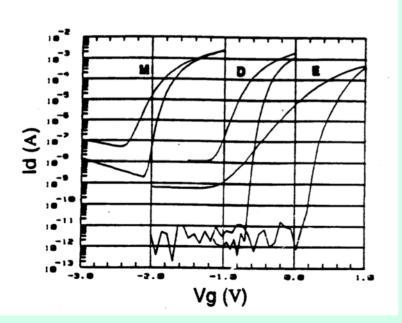
Congelamento dei portatori

La energia di ionizzazione dei donori pone un limite alla minima temperatura di operazione




Caratteristiche della tecnologia GaAsMESFET alle basse temperature

- Virtuale assenza di congelamento dei portatori.
- Elevata velocità di saturazione degli elettroni.
- Elevata resistenza alla radiazione.
- Posibilità di realizzare dei FETs ad alta capacità C_{GS}
- Processo industriale QED/A della TriQuint studiato e caratterizzato a temperature criogeniche dal gruppo di Milano.
- Preamplificatori realizzati:
 - circuiti ibridi per operazione a 4 K
 - dispositivi monolitici per il preshower e per il calorimetro a LAr di Atlas.
- In seguito ai risultati di Milano sul processo QED/A a temperature criogeniche, il gruppo di Monaco ha realizza con sucesso migliaia di preamplificatori per il calorimetro adronico di Atlas.


Il processo QED/A GaAs MESFET della Triquint

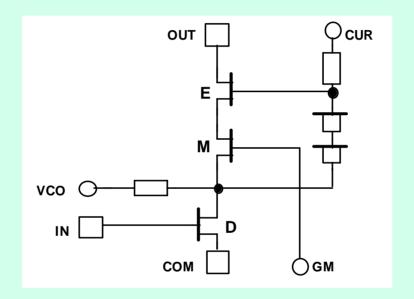
Metal System Cross Section

3 tipi di FETs: M, D, E In ordine decrescente di drogaggio.

La pendenza rappresenta il rapporto trasconduttanza/corrente

Il SuperFET:sfruttando la tecnologia QED/A a differenti livelli di drogaggio[1-2]

- Motivazioni: realizzazione di preamplificatori per applicazioni a ~ 77 K
- Caratteristiche del GaAs: virtuale assenza di congelamento di portatori (energia di ionizzazione di soli 3 meV)


Livello di drogaggio

Type of FET	M (elevato)		D (medio)			E (basso)			
Temperature	300 K	77 K	4 K	300 K	77 K	4 K	300 K	77 K	4 K
Threshold voltage [V]	-2.9	√ -2.0	-1.8	-1.1	-0.8V	-0.7	+0.05	+0.35	+0.4
Max. D-S op. voltage [V]	4.0/	3.0	~2.0	5.0	4.0	~3.0	15	12	8
1/f factor H _f [10 ⁻²⁶ Joule]	n/d	76	n/d	n/d	10	2.8	n/d	100	n/d

Elevata trasconduttanza Minimo rumore Massima tensione

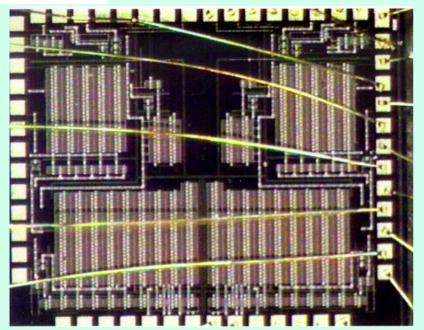
Schema del SuperFET

□ Out ----> SuperDrain

□ Com ----> SuperSource

□ IN ----> SuperGate

Vco ----> Input FET bias


Cur ----> Diode bias

Gm ----> limits the leakage

current.

I primi campioni di SuperFETs

- Rumore serie: $0.2 \text{ nV/}\sqrt{\text{Hz}}$ a 77 K
- Impedenza d'uscita ~ 1Meg
- Trasconduttanza: 30 mA/V @ 1 mA
- Dinamica: superiore a 12 V
- Temperatura di operazione : 4 K -100K
- $W = 50000 \mu m$

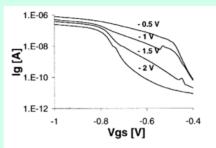


Fig 7: Gate current at 77 K as a function of V_{GM} , the potential of pad GM.

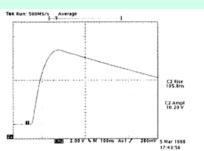
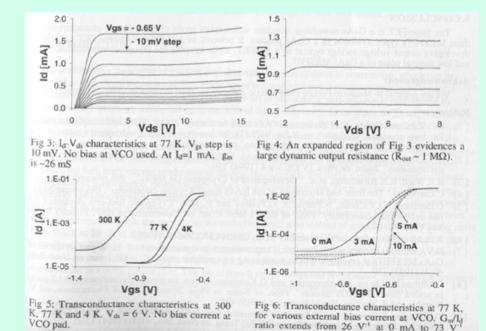



Fig: 8: A 10 V amplitude pulse developed at the output of the test charge-sensitive preamplifier at 77 K.

above 3 mA.

Il primo preamplificatore di carica basato sul SuperFET

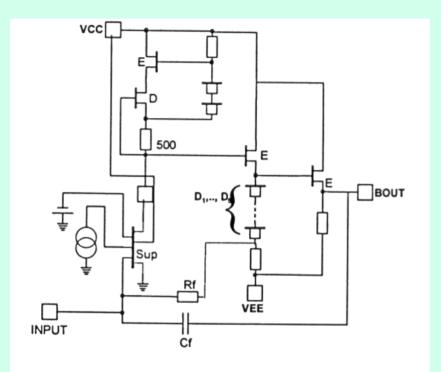


Fig 1: The circuit diagram of the cryogenic charge sensitive preamplifier.

Il preamplificatore basato sul SuperFET ha un elevato range dinamico, ca. 22 bit, e basso rumore, 0.2 nV/ √Hz.

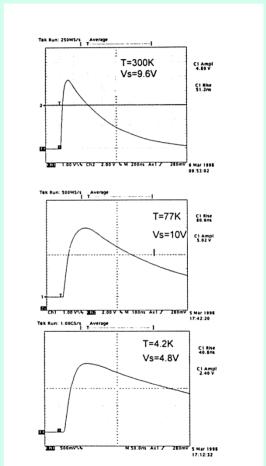


Fig. 5 Large signal response of the cryogenic charge-sensitive preamplifier.

Selected results of the SuperFET: misure di rumore

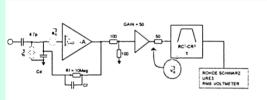
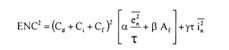



Fig 6: Experimental setup for ENC measurement

C'e un ottimo accordo fra il rumore misurato e quello calcolato: 0.21 nV/√Hz

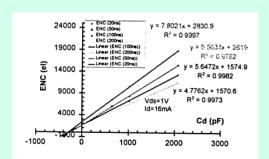


Fig 9: Equivalent Noise Charge of the CSP for various detector capacitance and shaping times. Bias conditions are Vds=1V, Ids=16mA...

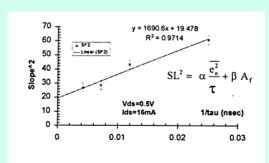


Fig 8: Noise slope squared, extracted from Fig 6 plots, versus $1/\tau$.

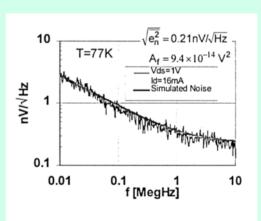


Fig 11: Noise spectra of the CSP taken with a spectrum analyser, compared with simulated spectra using data from $ENC = f(C_{D}, \tau)$.

Sviluppo di JFETs al Germanio [3]

DEVELOPMENT OF CRYOGENIC GE JFETS - III

R. R. Ward, R. K. Kirschman, M. D. Jhabvala, R. S. Babu, N. C. Das, D. V. Camin, K. Grassi, K. Kandiah, and J. J. Rosenberg

¹Germanium Power Devices, Andover, Massachusetts, U.S.A

²NASA Goddard Space Flight Center, Greenbelt, Maryland, U.S.A.

³Ball Aerospace & Technologies Corp., Boulder, Colorado, U.S.A.

⁴Raytheon/STX, Lanham, Maryland, U.S.A.

⁵Physics Department of the University and INFN, Milan, Italy

⁶Consultant, Sutton Courtenay, Oxon, U.K.

⁷Department of Engineering, Harvey Mudd College, Claremont, California, U.S.A.

*Also: Consulting Physicist, Mountain View, California, U.S.A.

Table 1 – Parameters of Ge JFETs for which results are presented. L_g = 50 μ m for A53G, A54G and 537L, for all others L_g = 40 μ m. JFETs 524A, 526A, 529A and 537L are p-channel, all others are n-channel.

JFET	Geometry	Wg (μm)	Approx Vp at 77 K (V)	See Figures
25B	Rectangular	2 x 780	-3	6
518B, 520B	Rectangular	2 x 780	-9	7
524A	Circular	1450	+2.4	4
526A, 529A	Circular	1450	+1.5	10
537L	Circular	850	+1.1	10
791B	Rectangular	2 x 780	-1.4	8
807B, 809B	Rectangular	2 x 780	-9	7, 11
A53G, A54G	Circular	2730	-6	2a, 2b, 8
B09, B12A, B13A	Circular	1450	-5	9

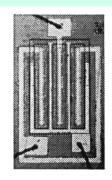


Figure 1 – Photos of a rectangular Ge JFET (approx. $30 \times$) and a circular Ge JFET (approx. $40 \times$).

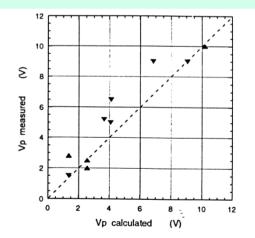


Figure 3 – Comparison of measured and calculated values of pinch-off voltage, V_p , for p-channel (\bullet) and n-channel (τ) Ge JFETs. (The sign of V_p is disregarded.)

Caratteristiche DC e Rumore

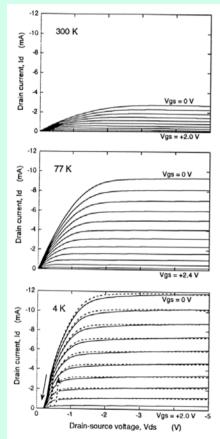


Figure 4 – Output characteristics of a p-channel Ge JFET (524A), exhibiting excellent characteristics down to liquid-helium temperature. For all plots $\Delta V_{gs} = 0.2 \text{ V}$. This Ge JFET exhibits the typical channel conduction threshold in V_{ds} (-0.25 V for this JFET) and the associated hysteresis (at arrows).

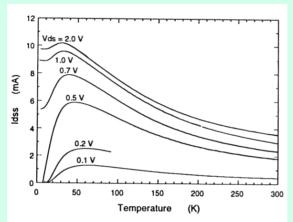


Figure 6 – Drain current for a Ge JFET (25B), illustrating a maximum around 30–60 K depending on V_{ds} , and conduction down to 2 K for V_{ds} > $\approx 0.6 \text{ V}$.

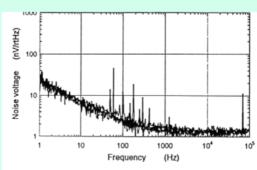


Figure 7 – Noise-voltage spectra for four n-channel Ge JFETs (518B, 520B, 807B, 809B) in liquid nitrogen. $V_{ds} = 1.2 \text{ V}$, $I_d = 330 \mu\text{A}$, $P = 400 \mu\text{W}$.

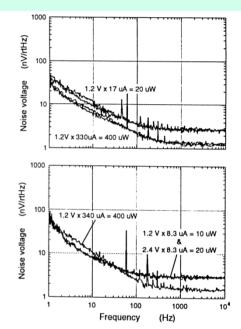


Figure 8 – Noise-voltage spectra for three n-channel Ge JFETs (top: A53G and A54G, bottom: 791B) in liquid nitrogen for power dissipation levels from 400 μ W down to 10 μ W. The numbers refer to V_{ds} , I_{d} , and power dissipation.

Misure di rumore, continuazione

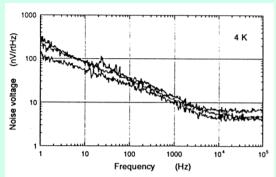


Figure 9 – Noise-voltage spectra for three n-channel Ge JFETs (B09A, B12A, B13A) in liquid helium. $V_{ds} = 1.2 \text{ V}$, $I_d = 300 \mu\text{A}$.

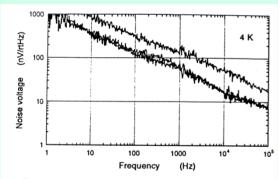


Figure 10 – Noise-voltage spectra for three p-channel Ge JFETs (526A, 529A and 537L) in liquid helium. $V_{ds} = 1.2 \text{ V}$, $I_d = 300 \mu A$.

Table 2 – Summary of noise measurements of Ge JFETs and comparison to other FETs. See Table 1 for geometry and dimensions of the Ge JFETs.

FET	Temp (K)	Power (μW)	Κ _f (μ√²∙μm²)	White level (nV/rtHz)	Figure or Reference
518B 520B 807B 809B	77	400	30	1.3	Fig 7
791B	77	400 10 & 20	~100 ≈100	1.6 3.0	Fig 8
A53G A54G	77	400 20	≃50 ≃ 100	1.3 2.7	Fig 8
807B	77 30	400	70 300	1.4 [1.7	Fig 11
TI Ge JFET	4	250 90	10° 100°	8 26	Ref 14**
NEC GaAs MESFET	4	360	20	1.4	Ref 12**
NASA Si JFET	77	60	10	3	Ref 15**

*On the basis of recent analysis of the Texas Instruments Ge JFET die, the estimate for gate area given in Ref. 1 (Table 1) was much too large, and thus the K_f values in Ref. 1 were also much too large.

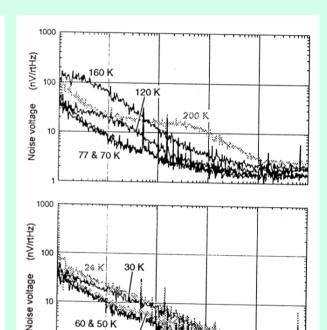


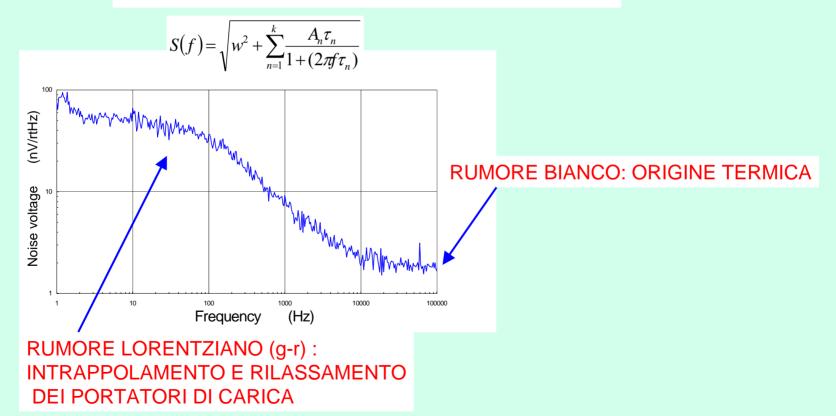
Figure 11 – Noise-voltage spectra for Ge JFET 807B at temperatures from 200 K to 24 K for $V_{ds} = 1.2 V$, $I_d = 300 \mu A$. The spectra are split between two plots for clarity.

Frequency

(Hz)

^{**}Also see Ref. 1, Table 1.

Conclusioni


- Le caratteristiche DC sono ottime anche a 4 K
- Si osserva comunque a 4K una soglia nella V_{DS} sotto la quale non c'e conduzione di corrente per il totale congelamento dei portatori.
- La temperatura ottimale per il rumore si trova fra 30-60 K.
- Nello stesso range si trova anche il massimo della corrente Id.
- In confronto con i SiJFETs, I JFETs al Ge presentano una temperatura ottimale molto inferiore (~ 30 K) agli 80 K in cui I JFETs cessano di condurre per il congelamento dei portatori.
- La maggior parte delle misure di rumore sono state fatte a Milano.

Indagine spettroscopica di JFETs al Germanio per applicazioni criogeniche mediante la analisi del rumore a bassa frequenza[4]

Introduzione alla Spettroscopia LFN VS T

TIPICA MISURA DI RUMORE DI UN JFET

La costante di tempo caratteristica associata ad un processo GR dipende dalla temperatura, Shockley and Read 1952 [1]

Sah (1964) [2], dimostra che il rumore causato dal processo GR nella zona di svuotamento e la principale sorgente di rumore in un JFET, e calcola la costante di tempo associata ad un centro GR come:

$$\tau = \frac{1}{c_p(p_0 + p_1) + c_n(n_0 + n_1)}$$

$$p_1 = n_i \exp[(E_i - E_t)/kT] \qquad n_1 = n_i \exp[(E_t - E_i)/kT]$$

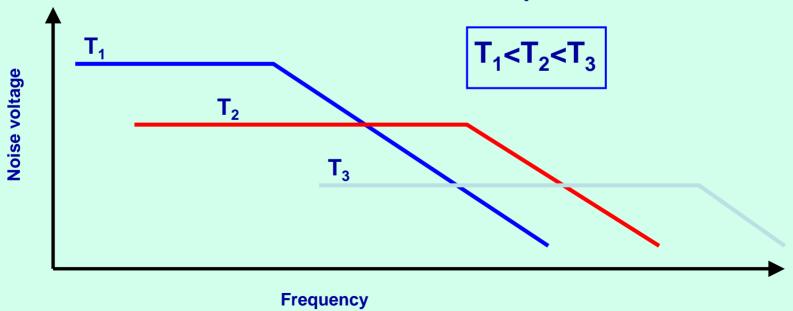
$$\mathbf{dove}\ c_p = \sigma_p v_{tp} \mathbf{e} \qquad c_n = \sigma_n v_{tn}$$

Assumendo che p0 e n0, la concentrazione delle lacune e degli elettroni nella regione di svuotamento, siano trascurabili

[1] W. Shockley, W. Read, Statistics of Recombination of Holes and Electrons, Physical Review, vol 87 N5, pp 835-842 (1952).

[2]C.T. Sah, Theory of Low Frequency Generation Noise in Junction Gate FET,

Proceedings of IEEE vol 52 (1964), pp 745-814.


Introduzione alla Spettroscopia LFN vs T

La costante di tempo associata ad un centro GR può essere riscritta come :

$$\tau = \frac{1}{n_i \left\{ c_p \exp\left(\frac{E_i - E_t}{kT}\right) + c_n \exp\left(\frac{E_t - E_i}{kT}\right) \right\}}$$

La forte dipendenza dalla temperatura di τ è dovuta alla dipendenza dalla temperatura di n_i il quale decresce al decrescere della temperatura

In termini di forma spettrale:

Introduzione alla Spettroscopia LFN vs T

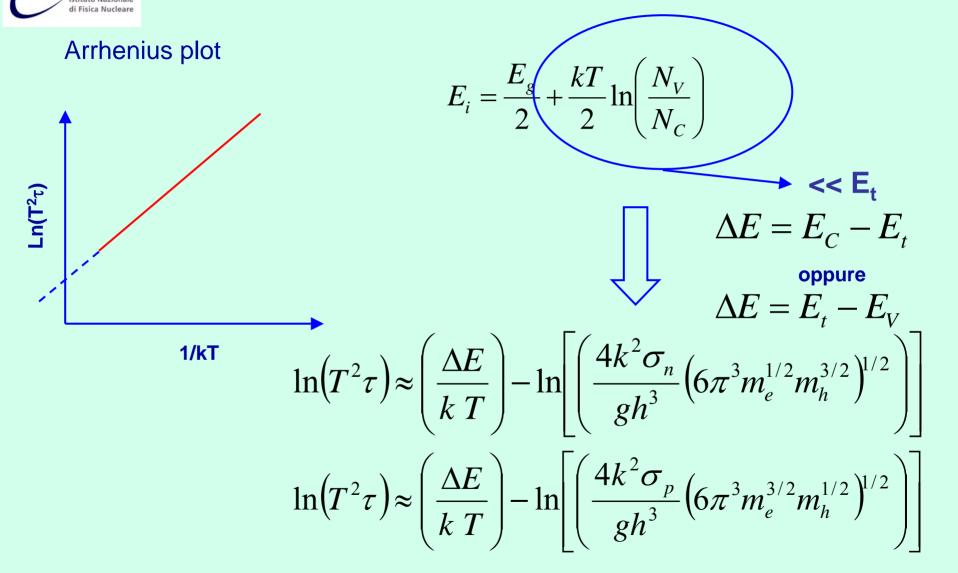
Scholz, Hwang and Schroeder (1988) [3] e successivamente Scholz and Roach (1992) [4], hanno sviluppato un metodo basato sulla analisi spettrale del rumore che consente di estrarre la energia di attivazione delle trappole al pari della tecnica DLTS:

Assumendo $E_t - E_i > 0$, moltiplicando entrambi i membri della equazione precedente per T^2 ed esplicitando n_i è possibile scrivere:

$$\ln(T^{2}\tau) = \left(\frac{E_{g}/2 - E_{t} + E_{i}}{kT}\right) - \ln\left[\left(\frac{4k^{2}\sigma_{n}}{h^{3}}\left(6\pi^{3}m_{e}^{1/2}m_{h}^{3/2}\right)^{1/2}\right)\right]$$

e per: $E_t - E_i < 0$

$$\ln(T^{2}\tau) = \left(\frac{E_{g}/2 + E_{t} - E_{i}}{kT}\right) - \ln\left[\left(\frac{4k^{2}\sigma_{p}}{h^{3}}\left(6\pi^{3}m_{e}^{3/2}m_{h}^{1/2}\right)^{1/2}\right)\right]$$


[3]F. Scholz, J. Hwang and D. Schroder, Low Frequency Noise and DLTS as Semiconductor Characterization Tool,

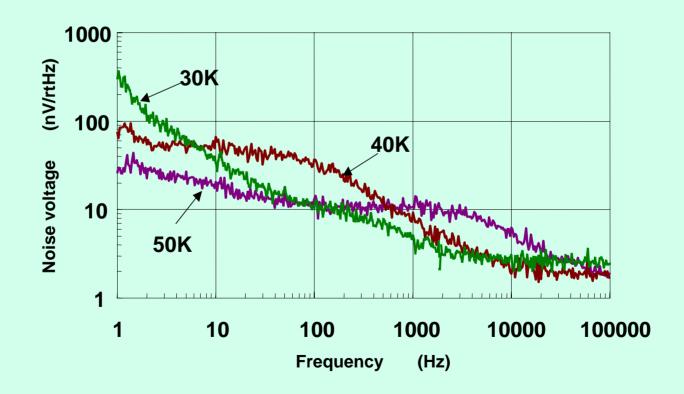
Solid State Electron. Vol 31, N.2, pp 205-217, (1988).

[4]F. Scholz, J.Roach, Low Frequency Noise as tool for Characterization of Near-Band Impurities in Silicon, Solid State Electron. Vol 35, N.4, pp 447-452, (1992).

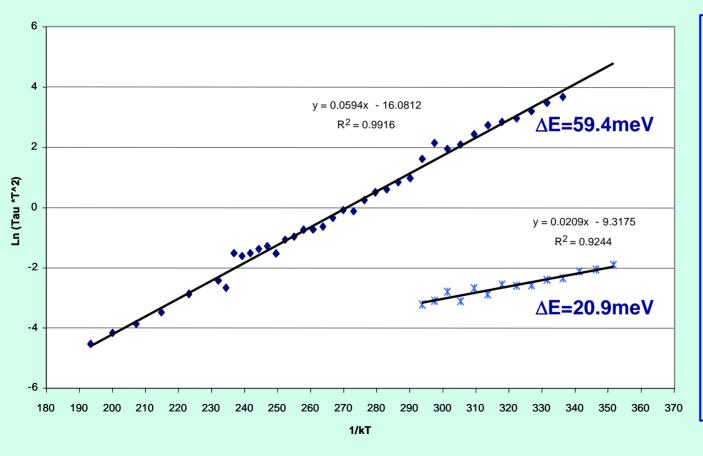
Introduzione alla Spettroscopia LFN vs T

La espressione del livello di Fermi per un semiconduttore intrinseco

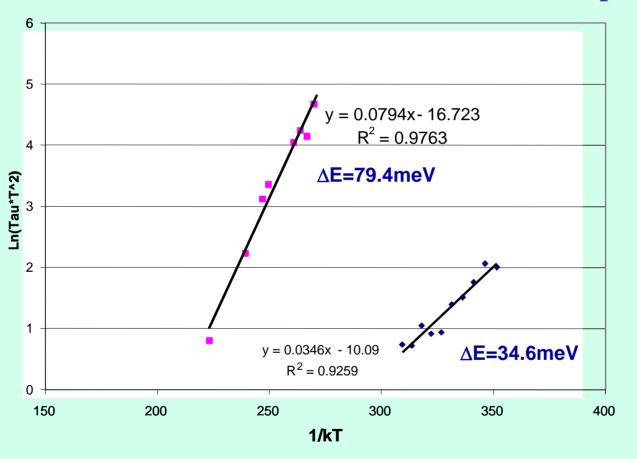
Ge JFET CAMPIONE A74G[8]


- •CANALE n
- •GEOMETRIA CIRCOLARE
- •LUNGHEZZA DI GATE 50μm
- •LARGHEZZA DI GATE 2730μm
- •POLARIZZAZIONE: Id=330μA Vds=1.2V
- •POTENZA DISSIPATA: 400μW

[8]R.R.Ward, R.K. Kirschman, M.D. Jhabvala, R.S. Babu, N.C. Das, D.V. Camin, V.Grassi, K. Kandiah and J.J. Rosemberg, Development of Cryogenic Ge JFETs-III, 4th Workshop On Low Temperature Electronics, ESA Proceedings WPP-171, pp 105-111 (2000).


Ge JFET campione A74G

RUMORE DI TIPO LORENTZIANO NELL'INTERVALLO 30K-50K


ARRHENIUS PLOTS (Ge JFET campione A74G)

DA MILNES E SZE: Ev + 60 meV**LIVELLO ACCETTORE DEL BERILLIO** Ev + 20 meV **LIVELLO ACCETTORE DEL BERILLIO**

ARRHENIUS PLOTS (Ge JFET campione A74G)

Ev + 37 meV **LIVELLO ACCETTORE DEL RAME** (ODLTS)[9] Ev + 72 meV**LIVELLO ACCETTORE DEL GALLIO** (SZE) Ev + 71 meV**LIVELLO ACCETTORE DELL'IDROGENO** (ODLTS)[9]

[9]A. Blondeel, P. Clauws and D. Wincke, Optical Deep Level Transient Spectroscopy of minor Carrier Traps in n-type HP Germanium, J. Appl. Phys., Vol 81, No 10, May 1997.

Conclusioni

- •La tecnica spetroscopica LFN vs T e' stata decisamente migliorata.
- •I JFETs al Ge indagati mostrano la possibilita' di operare sino a 2K e mostrano rumore accettabile sino a 30 K.
- •Mediante la spettroscopia LFN vs T abbiamo determinato la natura delle trappole generanti rumore Lorentziano nel range 30K-50K.
- •La spettroscopia di rumore LFN vs T si e' dimostrata una tecnica adatta alla determinazione dei contaminanti nel processo di fabbricazione di JFETs a basso rumore.

Alcuni riferimenti che riguardano la spettroscopia LFN vs T

- [1] D.V. Camin, G.Pessina and E.Previtali.

 "The SuperFET: a High Performance GaAs Voltage-Controlled Current Source for Cryogenic Applications"

 Journal de Physique IV, Pr3, vol 8, (1998) pp.167-170.
- D.V. Camin, C.F.Colombo, V.Grassi and G.Pessina.
 "A Cryogenic Charge-sensitive Preamplifier based on the 'SuperFET' structure'.
 ESA Proceedings WPP-171 (2000) pp.143-147.
- [3] R.R. Ward, R.Kirschman, D.V.Camin, V. Grassi et al, "Development of Cryogenic Ge JFETs –III", Proc. of ESA, WPP-171 (2000), pp.105-111
- [4] V.Grassi, C.F.Colombo, and D.V. Camin, "Low Frequency Noise versus Temperature Spectroscopy of recently designed Ge JFETs", *IEEE Trans. on Electr. Dev.*, vol. 48 (12) (2001) 2899 -2905.